首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
针对霍邱周油坊铁矿的特点,为探讨螺旋溜槽、弱磁选和强磁选3种工艺组合对该矿中镜铁矿和磁铁矿的回收效果,在磨矿细度为-0.074 mm 50%的条件下通过弱磁-螺旋溜槽-强磁选流程、弱磁-强磁-螺旋溜槽流程和螺旋溜槽-弱磁-强磁选流程3种不同方案研究适合周油坊铁矿粗磨阶段的选矿流程,试验最终确定1段粗磨选矿作业采用原矿粗磨-弱磁-强磁抛尾-混合精矿螺旋溜槽重选流程,并获得了产率为19.21%,铁品位为66.01%的重选精矿,指标较合理。  相似文献   

2.
安徽某赤铁矿选厂生产现场选矿工艺中螺旋溜槽重选流程给矿粒度较细,-0.074 mm占77.84%,铁主要分布于0.045~0.074 mm粒级中;精矿铁品位62.39%、作业回收率9.89%,指标较差。为提高铁精矿质量和回收率,进行重选流程改造试验。结果表明,在最佳条件下,弱磁选—中磁选—混合磁精矿离心机重选全流程试验可获得作业产率34.13%、铁品位65.49%、作业回收率60.78%的合格铁精矿,较现场重选指标显著改善。该磁选—重选工艺流程可代替原螺旋溜槽重选流程。  相似文献   

3.
林小凤  袁启东  张永 《现代矿业》2022,(7):159-161+167
为合理开发利用某赤褐铁矿资源及为后续选别工艺提供技术参考依据,针对该矿石的性质特点进行了系统的选矿工艺试验研究。试验结果表明:采用原矿—磨矿(-0.076mm95%)—强磁选工艺,可获得铁品位55%以上的铁精矿;采用原矿—磨矿(-0.076 mm95%)—螺旋溜槽重选工艺、原矿—磨矿(-0.076 mm95%)—强磁—螺旋溜槽重选工艺,可获得品位58%以上的铁精矿。  相似文献   

4.
难选白钨矿重-浮选矿新工艺的研究   总被引:1,自引:0,他引:1       下载免费PDF全文
根据矿石工艺矿物学性质,采用棒磨-细筛闭路磨矿、螺旋溜槽重选、细泥浮选的重-浮联合流程选白钨矿,重选可丢弃约3/4的尾矿.对品位(WO3)30.5%的重选粗精矿,可用常温浮选精选;对产率不足1/5的细泥矿,用常规浮选工艺选白钨矿.原矿品位为1.47%时,可获得白钨精矿品位66.58%,回收率82.15%.与全浮流程相比,回收率接近,但重-浮工艺的选矿成本较低.  相似文献   

5.
安徽某硫铁矿烧渣铁的综合利用研究   总被引:1,自引:0,他引:1  
针对安徽某硫铁矿烧渣进行了单一重选、磁选、螺旋溜槽-摇床重选工艺、二段磁选-摇床重选工艺、二段磁选-螺旋溜槽重选联合工艺研究,试验结果表明,采用预先筛分-二段磁选-摇床重选联合工艺,可得铁精矿品位62%以上、回收率76.49%、S<0.3%的理想指标,可为该硫铁矿烧渣铁综合回收提供技术依据。  相似文献   

6.
赵阳  刘泽伟 《现代矿业》2020,36(1):156-158
为了解采用物理提纯工艺处理新疆某难选赤褐铁矿石的效果,进行了单一重选与强磁选—重选联合流程选矿试验。结果表明:矿样在磨矿细度为-0.074 mm占63%的情况下,采用螺旋溜槽粗选—高品位中矿摇床精选—螺旋溜槽粗选总尾矿螺旋溜槽扫选,可获得铁品位超过62%、回收率为27.95%的混合铁精矿;采用立环脉动高梯度强磁选—摇床精选流程处理,可获得铁品位为63.08%、回收率为21.56%的摇床精矿;采用立环脉动高梯度强磁选—螺旋溜槽精选流程处理,可获得铁品位为62.65%、回收率为17.28%的铁精矿。试验结果表明,物理提纯工艺不适合该矿石的处理。  相似文献   

7.
根据内蒙古某铁矿性质,对采用BKY型预选磁选机进行磨前湿式磁预选、预选粗精矿细磨后再选以及BL1500螺旋溜槽重选磁预选尾矿等方面的可行性进行研究,取得铁精矿综合品位62.46%、总产率30%、总回收率43%的指标。表明使用BKY磁选机与BL1500螺旋溜槽组成的磁选—重选联合流程选别该类型铁矿石是可行的。  相似文献   

8.
为了更好地回收矿石中的铁资源,安徽周油坊铁矿厂引入螺旋溜槽重选设备,对弱磁-重选-强磁-反浮选、重选-弱磁-强磁-反浮选、弱磁-强磁-重选-反浮选三种重选流程进行实践和优化,并分别对螺旋溜槽应用效果进行了全面的考察和对比,最终确定采用弱磁-强磁-重选-反浮选流程,使精矿产率超过15%,精矿品位达65%,有效地回收了矿石中铁资源,实现了"能收早收"的选矿原则,同时也大大节约了生产成本。  相似文献   

9.
在对某砂状铬铁矿进行选矿工艺探索试验基础上,比较了磨矿—摇床1粗1精选别流程、磨矿—摇床重选预富集—湿式弱磁精选流程、磨矿—螺旋溜槽重选预富集—湿式弱磁精选流程分别处理矿石的效果,在结合选别设备特性的基础上,推荐磨矿—螺旋溜槽重选预富集—湿式弱磁精选流程为该试样的处理流程,可以获得Cr2O3品位为42.45%、回收率为75.56%的铬精矿,产品品质达到冶金用铬精矿工业指标要求。  相似文献   

10.
针对大坳微细粒低品位云英岩型钨锡矿石的工艺特性,分别采用螺旋溜槽重选、阶段磨矿阶段选别的筛分摇床重选试验,并结合浮选试验,进行选矿工艺对比,采用阶段磨矿、阶段选别筛分摇床重选可取得较好的选矿效果,综合回收率达80.58%,提高了矿石的可利用性,是处理微细粒低品位钨锡矿石的有效手段。  相似文献   

11.
由北京矿冶研究总院研制的BL1500螺旋溜槽用于赤铁矿、镜铁矿、铬铁矿等弱磁性矿的原矿重选在选矿工业中得到了大量的应用。承德某铁矿首次将BL1500螺旋溜槽用于该矿磁铁矿磁选后的铁精矿再选,以解决磁铁矿在磁选中因磁团聚而影响铁精矿品位的问题。采用“磁-重”的联合流程对原流程进行改造,取得了良好的效果,经工业生产考核,改造后,在选厂总回收率不变的情况下,可以提高最终铁精矿品位2-3%。  相似文献   

12.
杨菊 《矿冶》2000,9(2):32-36
查明了铁矿物的赋存状态和工艺特性 ,结合生产实践 ,论述了影响铁矿物回收的因素及提高铁回收率的方法和途径。试验结果表明 :弱磁 -螺旋溜槽重选可获得铁精矿品位 66 0 2 %、回收率 90 94%的理想指标 ,比弱磁 -中磁流程铁回收率提高 2 43%。  相似文献   

13.
为优化司家营铁矿选厂重选流程,进行了螺旋溜槽给矿浓度、分矿滑块位置调整等试验。试验结果表明:适宜的螺旋溜槽给矿浓度在55%左右;在不改变螺旋溜槽粗选2精矿带宽度的情况下,调窄其中矿带宽度、调宽尾矿带宽度,减少中矿循环量,可提高重选精矿TFe品位3.60个百分点,尾矿TFe品位下降0.57个百分点,重选分选效果明显改善。最终提出的重选工艺流程优化建议为:降低重选给矿浓度;取消螺旋溜槽粗选2作业,将该作业的螺旋溜槽与原粗选1螺旋溜槽并列使用,用于扩大粗选1处理能力;取消螺旋溜槽粗选中矿与尾矿间的分矿滑块,提高进入磁选作业的量。这样改造不仅能提高重选精矿品位,还能降低重选作业成本。  相似文献   

14.
为合理利用国外某褐铁矿石,在对原矿性质分析的基础上对原矿进行了连续磨矿—单一强磁选、阶段磨矿—单一强磁选、连续磨矿—螺旋溜槽重选—强磁选3种不同的选矿工艺流程试验,最终确定采用连续磨矿—螺旋溜槽重选—强磁选流程选别,最终获得了产率为51.80%、铁品位为62.85%、铁回收率为70.50%的铁精矿,取得了较好的工艺指标。  相似文献   

15.
昆钢大红山铁矿二选厂采用振动螺旋溜槽+摇床重选工艺代替浮选工艺,对铁品位49.43%,S iO2含量16.71%的强磁选精矿进行选别,精矿铁品位提高到58.71%,S iO2含量降到12.32%,铁回收率85.21%,达到了降低S iO2技改含量,提高铁精矿品位,节约成本的目的。  相似文献   

16.
袁来敏 《矿冶》2014,23(1):18-20
针对西藏某高品位高氧化率难选氧化铅矿进行了详细的选矿试验研究。试验结果表明采用"螺旋溜槽重选—尾矿硫化铅浮选—氧化铅浮选"工艺取得了良好的选矿指标。重选精矿铅品位47.40%,铅回收率79.87%;重选尾矿浮选中硫化铅精矿铅品位61.52%,铅回收率4.02%,氧化铅精矿铅品位63.98%,铅回收率13.11%。该工艺流程的确定为矿石的合理开发提供了依据。  相似文献   

17.
莫桑比克某海滨砂矿TiO2品位3.33%, 为开发利用该资源, 开展了重选-磁选工艺试验研究。原矿搅拌调浆后, 经过螺旋溜槽一次粗选和一次精选、重选精矿弱磁选、弱磁尾矿强磁选工艺处理, 可获得TiO2品位39.15%、TiO2回收率74.63%的钛精矿。研究成果为该资源的后续处理提供了数据支撑和技术支持。  相似文献   

18.
南非某风化壳沉积钛铁矿石铁品位为19.06%、Ti O2品位为9.90%。为开发利用该矿石,对其进行了选矿试验研究。结果显示:采用干式强磁选抛尾—弱磁选除铁—螺旋溜槽重选—摇床精选的工艺流程可以获得铁品位49.05%、铁回收率33.75%、Ti O2品位21.02%、Ti O2回收率27.70%的铁精矿,铁品位38.84%、铁回收率16.70%、Ti O2品位47.12%、Ti O2回收率39.02%的钛精矿。在此条件基础上进行了不同工艺流程对比试验,综合各因素,推荐采用强磁干选抛尾—螺旋溜槽粗选—弱磁除铁—螺旋溜槽精选—摇床精选的试验流程。  相似文献   

19.
在实验室条件下,对南非某钛铁矿进行初步选矿试验研究,用以初步确定该类型钛铁矿可选性及选矿工艺方法。该类型原矿TFe品位20.46%,TiO_(2)品位10.08%,通过200 mT干式磁选进行分选,获得干式磁选尾矿。随后对该尾矿采用螺旋溜槽-摇床重选-湿式弱磁选工艺进行分选,最终获得TiO_(2)品位为46.4%的钛精矿。为进一步提高钛精矿品位,在实验室条件下采用浮选工艺进行分选试验,在磨矿细度为-0.074 mm含量占比为78%及粗选捕收剂用量400 g·t^(-1)和起泡剂用量100 g·t^(-1)条件下,经过一粗、一精、二扫浮选流程进行选别,最终可获得含TiO_(2)为49.1%的合格钛精矿。通过上述试验研究,该钛铁矿可采用磁-重-浮联合工艺流程,以获取合格品位要求的精矿。  相似文献   

20.
为了合理高效的开发利用南非某地区铬铁矿资源,借助中钢集团安徽天源科技股份有限公司自主研发生产的GM系列高压辊磨机,采用高压辊磨破碎—螺旋溜槽重选工艺进行试验研究。研究结果表明:高压辊磨破碎—螺旋溜槽粗选—精矿再选工艺流程可获得品位50.64%,产率40.41%,回收率84.29%的铬精矿,选别指标良好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号