首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
机械合金化+烧结制备TiC/Ti3SiC2复合材料   总被引:1,自引:0,他引:1  
以Ti、Si和C单质粉末为原料,采用机械合金化合成了TiC/Ti3SiC2混合粉体,并用放电等离子烧结球磨粉体制备了致密的TiC/Ti3SiC2陶瓷。结果表明,机械合金化可以合成由TiC和Ti3SiC2组成的混合粉体,同时还可以细化晶粒,促进烧结的致密化过程。在1200℃下,保温5min,加压30MPa,对机械合金化1h时的粉体进行放电等离子烧结可制备相对密度高达99.1%的TiC/Ti3SiC2复合陶瓷。  相似文献   

2.
以3Ti/Si/2C/0.2Al单质混合粉体为原料,采用机械合金化法制备Ti3SiC2材料.研究球磨工艺(球磨时间、球料比和球径大小、过程控制剂)对机械合金化合成Ti3SiC2影响.结果表明,机械合金化(球料比10:1,球径10 mm)单质混合粉体7 h后,原料粉体发生化学反应,生成了TiC和Ti3SiC2粉体和块体产物.球料比和球径大小对反应合成Ti3SiC2影响并不显著,但明显影响反应的孕育期.适当增大球径和球料比可明显缩短反应的孕育期,采用较大的磨球或过高的球料比会降低球磨效率,延长孕育期;添加过程控制剂(乙醇),不但会延长反应的孕育期,而且抑制反应合成Ti3SiC2.  相似文献   

3.
以3Ti/Si/2C/0.2Al粉体为原料,采用机械合金化和真空热处理的方法合成了高纯度的Ti3SiC2粉体,并分析了粉体颗粒的外观形貌.结果表明,对3Ti/Si/2C/0.2A1粉体机械合金化4 h,可以生成Ti3SiC2和TiC的混合粉体.采用真空碳管炉对机械合金化粉体产物进行热处理,可以显著提高粉体中Ti3SiC2含量.热处理温度对粉体Ti3SiC2含量有很大的影响,过高或过低都不利于提高粉体中Ti3SiC3含量.在1150℃保温2 h得到的粉体产物Ti3SiC2含量最高,达到97.1 v01%.热处理产物粉体颗粒比较细小,适合做复合材料的原料.  相似文献   

4.
Si掺杂放电等离子合成Ti2AlC/Ti3AlC2材料及理论分析   总被引:4,自引:0,他引:4  
以Ti粉、Al粉、活性炭和Si粉为原料,采用放电等离子工艺分别以摩尔比为2.0Ti/1.1Al/1.0C、2.0Ti/1.0Al/0.1Si/1.0C、2.0Ti/1.0Al/0.2Si/1.0C、2.0Ti/0.9Al/0.2Si/1.0C和2.0Ti/1.0Al/0.3Si/1.0C,在1 200 ℃合成了Ti2AlC/Ti3AlC2块体材料.通过合成试样的X射线衍射谱,确定了放电等离子合成试样的物相组成,并用扫描电镜结合能谱仪观察了合成试样的显微结构和微区成分.结果表明:以2.0Ti/1.1Al/1.0C为原料放电等离子合成了层状结构明显的Ti2AlC材料;掺Si后所有试样都由Ti2AlC、Ti3AlC2和Ti3SiC2 3种物相组成;当掺Si量逐渐增大,即Al与Si的量比减小时,试样中Ti3AlC2和Ti3SiC2的含量增加,而Ti2AlC的含量降低,同时颗粒得到细化.应用量子化学计算结果解释了掺Si后不利于Ti2AlC的生成,而有利于Ti3AlC2的生成机理,说明了掺Si后固溶体的产生过程.  相似文献   

5.
以Ti粉、Al粉、活性炭和Si粉为原料,采用放电等离子工艺分别以摩尔比为2.0Ti/1.1Al/1.0C、2.OTi/l.0Al/0.1Si/1.0C、2.0Til1.0Al/0.2Si/1.0C、2.0Ti/0、9Al/0.2Si/1.0(2和2.0Ti/1.0Al/0.3Si/1.0C,在1200℃合成了Ti2AlC/Ti3AlC2块体材料。通过合成试样的X射线衍射谱,确定了放电等离子合成试样的物相组成,并用扫描电镜结合能谱仪观察了合成试样的显微结构和微区成分。结果表明:以2.0Ti/1.1Al/1.0C为原料放电等离子合成了层状结构明显的Ti2AlC材料;掺Si后所有试样都由Ti2AlC、Ti3AlC2和Ti3SiC23种物相组成;当掺Si量逐渐增大,即Al与Si的量比减小时,试样中Ti3AlC2和Ti3SiC2的含量增加,而Ti2AlC的含量降低,同时颗粒得到细化。应用量子化学计算结果解释了掺Si后不利于Ti2AlC的生成,而有利于Ti3AlC2的生成机理,说明了掺Si后固溶体的产生过程。  相似文献   

6.
Sn做助剂机械合金化+热处理制备Ti_3AlC_2   总被引:1,自引:0,他引:1  
以3Ti/Al/2C/0.1Sn粉体为原料,进行机械合金化,并对粉体产物进行热处理,制备高含量Ti3AlC2材料,并分析了产物的微观形貌。机械合金化3Ti/Al/2C粉体,可合成TiC、Ti3AlC2和Ti2AlC混合粉体产物。添加适量Sn可消除产物中的Ti2AlC,明显促进Ti3AlC2合成。对粉体产物进行热处理,可以提高产物Ti3AlC2含量。热处理温度过低或过高都不利于Ti3AlC2含量的提高。随着热处理温度的提高,晶粒长大明显,烧结倾向加剧,研磨困难。在900℃可以获得质量分数为95.2%的Ti3AlC2。热处理产物颗粒比较细小,可做复合材料的原料。  相似文献   

7.
将Ti、Al混合粉以100℃/min的升温速率在400~980℃采用放电等离子方式进行烧结.通过XRD以及EPMA分析了烧结试样中的相和组织形貌,研究了Ti、Al混合粉在放电等离子烧结过程中的相变规律.结果表明,Ti、Al混合粉烧结中发生的相变符合Ti、Al粉体扩散反应的一般规律,即反应是由Al向Ti的扩散主导的.烧结过程可分为4个阶段:颗粒软化阶段、Al3Ti形成阶段、中间相生成阶段、最终产物生成及致密化阶段.在低于Al的熔点温度烧结时生成Al3Ti;AI消耗完之后,Al3Ti中的Al继续向Ti颗粒扩散,导致Al3Ti减少,并在界面上生成Ti2Al5、Al2Ti、TiAl及Ti3Al.在生成Al3Ti阶段,Al的熔化加快了反应速率.同时,适当施压可抑制Al的反致密化效果,得到致密度为98%的块体.  相似文献   

8.
机械合金化3Ti/Si/2C粉体,会诱发自蔓延反应,产生组成相为TiC、Ti3SiC2、TiSi2和Ti5Si3的粉体与块体产物.获得的粉体和块体产物中Ti3SiC2含量分别约为17.6%和58.2%(质量分数,下同).本研究提出了一个机械诱发自蔓延反应合成Ti3SiC2的反应机制,即Ti3SiC2是从固相TiC与Ti-Si液相中形核并长大.最后讨论了机械诱发自蔓延反应与自蔓延高温烧结对合成产物中Ti3SiC2含量及显微形貌的影响.  相似文献   

9.
放电等离子烧结热处理合成Ti_3SiC_2粉体   总被引:1,自引:1,他引:0  
采用机械合金化合成TiC和Ti_3SiC_2混合粉体,用放电等离子烧结(SPS)系统对该粉体进行热处理,以合成高纯Ti_3SiC_2粉体.结果表明,采用SPS无压热处理可以促进机械合金化粉体在较低温度转变成高纯Ti_3SiC_2粉体材料.随热处理温度(700~1000℃)的升高,产物中Ti_3SiC_2的含量相应增加,当热处理温度为900 1000℃时,产物中Ti_3SiC_2纯度可达98wt%.  相似文献   

10.
以3Ti/S i/2C/0.2A l粉体为原料通过机械合金化制备了Ti3S iC2粉体,用X射线衍射仪和扫描电镜对机械合金化粉体和热处理粉体进行相分析和颗粒形貌观察,研究了真空热处理温度对机械合金化制备Ti3S iC2粉体纯度的影响。结果表明,3Ti/S i/2C粉体球磨10 h可获得由TiC、Ti3S iC2、TiS i2组成的混合粉体,粉体中的Ti3S iC2含量最高可达到83wt%。在热处理温度为700~1000℃内Ti3S iC2粉末粉体含量随温度的提高而增加,当热处理温度为1000℃时,其含量可达到98wt%以上。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号