首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 218 毫秒
1.
王云平  赵小龙 《中国冶金》2018,28(10):14-18
为了研究卷取温度对高强IF钢250P1罩式退火再结晶规律的影响,采用氮气炉加热模拟罩式退火工艺,研究了高温及低温卷取工艺下含磷高强IF钢250P1冷轧板再结晶规律;采用X射线衍射仪对700 ℃模拟退火板及罩式退火成品板进行了织构分析,并对成品板金相组织进行了观察。结果表明,低温卷取冷轧板再结晶温度约为675 ℃,高温卷取冷轧板再结晶温度约为700 ℃;低温卷取退火板具有较高强度的{111}有利织构、较高的{111}/{100}比值以及r值,成品板的饼形晶粒更大。  相似文献   

2.
冯岩青  王福明 《特殊钢》2012,33(6):39-42
研究了IF钢(/%:0.005C、0.02Si、0.16Mn、0.011P、0.004S、0.042Als、0.061Ti、0.003 1 N)0.8 mm冷轧板在500~800℃退火时的再结晶组织及织构,采用X射线衍射技术结合微观组织观察分析了IF钢罩式退火过程中{111}再结晶织构形成机制和显微组织演变规律。结果表明,随退火温度的升高,再结晶数量逐渐增多,640℃为实验钢实际再结晶温度,同时{111}再结晶织构强度亦逐渐增大,{111}取向的晶粒主要在再结晶过程中形成,并在{111}取向晶粒长大过程中,γ纤维织构之间也发生相互转化,主要由{111}〈112〉织构转变为{111}〈110〉织构。  相似文献   

3.
研究了于铁素体区润滑热轧的Ti-IF钢在随后的冷轧及退火工艺中深冲性能的变化。结果表明,在冷轧压下量为75%时IF钢所获得的r值最高,织构分析表明,于铁素体区润滑热轧的IF钢具有较强的[111]//ND再结晶织物组分;冷轧时采用75%的压下量和随后的退火工艺可获得最强的[111]//ND再结晶织构,冷轧压下量进一步增加时。[111]//ND再结晶织构将会削弱。这种织构变化与冷轧时ND纤维晶粒内部的剪切带变化有关。  相似文献   

4.
冷轧压下率对铁素体区热轧Ti-IF钢冷轧板深冲性能的影响   总被引:2,自引:0,他引:2  
研究了于铁素体区润滑热轧的Ti-IF钢在随后的冷轧及退火工艺中深冲性能的变化.结果表明,在冷轧压下率为75 %时IF钢所获得的r值最高.织构分析表明,于铁素体区润滑热轧的IF钢具有较强的{111}∥ND再结晶织构组分;冷轧时采用75 %的压下率和随后的退火工艺可获得最强的{111}∥ND再结晶织构;冷轧压下率进一步增加时,{111}∥ND再结晶织构将会削弱.这种织构变化与冷轧时ND纤维晶粒内部的剪切带变化有关.  相似文献   

5.
采用光学显微镜和X射线衍射仪对低温板坯加热Hi-B钢的组织、织构的特征演变进行了研究。结果表明:从热轧板和常化板的表面到中心,组织和织构分布不均匀。热轧板组织分为表层再结晶区域、再结晶和变形晶粒混合区域和中心变形晶粒区域,并且热轧板各层的织构类型不同。常化板表层晶粒长大,过渡层和中心层的形变晶粒基本消失,常化板继承了热轧板的织构特点。冷轧板为纤维状变形组织,冷轧后形成了以{001}<110>~{111}<110>为主的α织构。脱碳渗氮板的横断面和纵断面的晶粒平均尺寸分别为25.9μm和25.3μm,织构主要为{111}<112>、{114}<481>和{001}<120>织构。成品板晶粒平均尺寸为19.1μm,成品板为单一的高斯织构。  相似文献   

6.
SPHC作为冷轧冲压用钢的原料,要求良好的冲压成型性,拉伸和弯曲性能以及较低的屈服强度,主要通过控制AlN在热轧过程中的固溶和析出,在随后的退火再结晶过程中促进γ纤维织构(<111>∥ND)的发展从而获得良好的冲压性能。退火工艺不同,热轧工艺也有所不同,对罩式退火,采用"三高一低"温度制度,对于连续退火,则采取低温加热、高温终轧以及高温卷取的工艺制度。  相似文献   

7.
利用光学显微镜(OM)和X射线衍射仪(XRD)研究了铸坯、热轧板、冷轧板和退火板的组织和织构,采用磁性能测试仪测试磁性能。结果表明,通过使用电磁搅拌可使连铸坯中心等轴晶率达到44.5%,采用高温卷取工艺使热轧钢板表面组织发生完全再结晶,平均晶粒尺寸为28.5μm,热轧板中心位置组织由再结晶晶粒和长条带状组织交错组成,退火板平均晶粒尺寸为74.2μm。热轧板厚度方向织构分布不均匀,表层织构主要为黄铜织构和高斯织构,1/4层织构主要为{100}和{112}组分,中心织构主要为{100}和{110}组分,退火板织构主要由{111}面织构和较弱的{100}面织构组成。随机抽取成品样板采用爱泼斯坦方圈法测量磁性能,结果满足用户要求。  相似文献   

8.
借助光学显微镜(OM)、X射线衍射(XRD)技术及电子背散射衍射(EBSD)技术,分析了2种含P高强度无间隙原子(IF)钢的热轧组织和热轧、冷轧及退火织构,结果表明:不含B与含B的高强IF钢热轧后,均得到多边形铁素体,但不含B热轧板晶粒尺寸较大。2种钢热轧板织构均比较散漫,γ纤维织构强度较弱,而不含B的IF钢经过80%大变形量冷轧以后,获得强的γ纤维织构,{111}面织构的体积分数达到41.41%,而含B的IF钢冷轧后{111}面织构的体积分数为33.83%。含B的IF钢冷轧后{112}110织构组分的体积分数比不含B的IF钢要高。2种实验钢在810℃退火60~180s以后,{111}面织构强度进一步增强,不含B的IF钢退火120s后{111}面织构的体积分数最大达到72.8%,而含B的IF钢退火120s后{111}面织构的体积分数最大达到66.6%。  相似文献   

9.
张沛学  李晨  张磊 《山东冶金》2013,(5):18-20,23
针对济钢现场工艺条件下生产的Ti-IF钢,利用X’Pert ProxX射线衍射宏观织构分析方法,研究了中薄板坯热连轧轧制及随后的冷轧、退火工艺过程中织构的变化规律。IF钢冷硬板主要织构类型为{111}〈110〉、{111}〈112〉和{001}〈110〉,其中{111}〈110〉织构强度达到12;再结晶退火后的IF钢退火板,主要织构类型为{111}〈110〉和{111}〈112〉,{111}〈110〉织构强度提高到15.37。济钢生产的Ti-IF钢获得了对板材成形最有利的{111}//ND织构。  相似文献   

10.
以工业生产的热轧板为原料,研究了冷轧压下率对罩式退火后的Ti-IF钢和Ti+Nb-IF钢组织织构和性能的影响。研究结果表明,经罩式退火后,两种IF钢再结晶基本完成,晶粒呈饼状;随着压下率的增加,晶粒尺寸变小;应变硬化指数n90&#176;值逐渐降低。Ti+Nb-IF钢塑性应变比r90&#176;值在碳含量较高、压下率为70%,或碳含量较低、压下率为80%时,达到最大值;Ti-IF钢塑性应变比r90&#176;值在压下率70%时,达到最大值。随着冷轧压下率的加大,IF钢的织构也越强,并且织构从较低冷轧压下率时的{223}〈110〉、{114}〈110〉和{111}织构变为较高压下率时的{223}〈110〉、{111}〈110〉和{114}〈110〉织构,织构类型有向{111}织构靠拢的趋势。  相似文献   

11.
 High-energy synchrotron diffraction offers great potential for experimental study of recrystallization kinetics. An experimental design to study the recrystallization mechanism of interstitial-free (IF) steel was implemented. The whole annealing process of cold-rolled IF steel with 80% reduction was observed in situ using high-energy X-ray diffraction (HEXRD). The results show how the main texture component of IF steel change, i. e. the α [<110>∥rolling direction (RD)] fiber texture decreases and the γ [<111>∥normal direction (ND)] fiber texture increases. The important part of the α fiber texture is that both the {100}<011> and {112}<011> texture decrease at the beginning of recrystallization. The γ fiber texture increases at the early stage of recrystallization which stems from the increase of {111}<112>. Nevertheless, the {111}<110> does not change after recrystallization. The dynamic evolution of the main texture components {100}<011>, {112}<011>, {111}<112> and {111}<110> is given by in-situ HEXRD.  相似文献   

12.
为了观察高强IF钢退火处理后的显微组织和再结晶织构的变化规律,采用两种不同退火工艺对高强IF钢进行热处理。结果表明,IF钢在两种退火方式下均形成了γ-{111}纤维织构,快速升温(350℃/min)退火时,再结晶新核呈等轴状,由变形带内的亚晶合并形成,与冷轧变形基体保持相同取向。慢速升温(2℃/min)退火时,新核在晶界弓出形成,且沿轧制方向呈饼形分布,与基体没有明显取向关系。慢速升温退火样品的γ-{111}取向密度强于快速升温的。对进一步改善薄板钢深冲性能具有指导作用。  相似文献   

13.
 The effects of hot rolling and cold rolling parameters on texture and r (plastic strain ratio) value of high strength ultra low carbon bake hardening (ULC-BH) steels are studied with orientation distribution function (ODF) structural analysis method. After hot rolling, the high strength ULC-BH steel sheet has weak γ-fiber with uniform orientation distributions, and weak α-fiber, of which {445}<110> component forms a high intensity peak at coiling temperature of 750 ℃. After cold rolling, both {111}<110>-{111}<112> intensity on the γ-fiber and {111}-{112}<110> intensity on the α-fiber enhanced. As a result of substitutional solute elements Mn and P being added to the steel, strong {112}<110> deformation texture component is observed on α-fiber, especially at 80% cold rolling reduction, and this leads to the strong {111}<112> recrystallization texture after annealing. The increase of cold rolling reduction shifts the maximum intensity on the γ-fiber from {111}<112> to {111}<113>. After annealing, a very strong γ-fiber is obtained, with intensity peak at {111}<112> component when cold rolling reduction reaches 80%. Increasing coiling temperature and cold rolling reduction improve γ-fiber intensity and r value, resulting in good deep drawability.  相似文献   

14.
利用背散射电子衍射(EBSD)技术,研究了不同连续退火温度下Ti-IF钢微观取向的演变规律,并对不同退火温度下退火板的力学性能进行研究。研究发现当退火温度较低时(780℃)织构分布相对随机,随退火温度升高,ND∥〈111〉织构比例增加,在860℃退火时得到的r值最高,同时ND∥〈111〉织构比例最高,但当退火温度继续升...  相似文献   

15.
赵小龙  王瑾  罗晓阳 《中国冶金》2016,26(12):40-43
采用LF-RH双精炼工艺,在CSP流程上进行了340 MPa级冷轧IF高强钢的开发。试验材料达到成分设计要求,罩式炉退火后微观组织为细小等轴铁素体组织,晶粒度在10级左右,力学性能达到340 MPa级高强度无间隙原子钢要求。EBSD结果表明,试验材料退火织构由较强的γ织构(<111>∥ND)和一定强度的α织构(<110>//RD)组成,α取向中较高的{112}<110>和{001}<110>织构是导致试验材料r均值偏低和Δr小于0的主要原因。  相似文献   

16.
借助电子背散射衍射(EBSD)技术,以罩退生产的冷轧Ti-IF钢及含磷Ti-IF高强钢为目标,分析不同磷、钛合金质量分数对产品特征织构的影响。结果表明,磷元素虽然有利于γ取向线上{111}〈112〉织构的增加,但也增加了组分强度差,不利于塑性应变比r值,并且磷元素对{111}织构发展的促进作用取决于钢中过剰钛的质量分数,过剩钛质量分数过高会促进FeTiP二相粒子的析出,从而阻碍{111}取向再结晶晶粒的长大,弱化{111}面织构的强度。研究结果对该材料合金成分的调整起到了指导作用。为了保证所生产的含磷IF高强钢获得一定的强度,同时兼备良好的冲压性能,应降低IF钢中的钛质量分数,适当加入铌以弥补因钛减少对间隙原子固定产生的影响。  相似文献   

17.
 Texture inhomogeneity usually takes place in ferritic stainless steels due to the lack of phase transformation and recrystallization during hot strip rolling, which can deteriorate the formability of final sheets. In order to work out the way of weakening texture inhomogeneity, conventional hot rolling and warm rolling processes have been carried out with an ultra purified ferritic stainless steel. The results showed that the evolution of through-thickness texture is closely dependent on rolling process, especially for the texture in the center layer. For both conventional and warm rolling processes, shear texture components were formed in the surface layers after hot rolling and annealing; sharp α-fiber and weak γ-fiber with the major component at {111}<110> were developed in both cold rolled sheet surfaces, leading to the formation of inhomogeneous γ-fiber dominated by {111}<112> after recrystallization annealing. In the center layer of conventional rolled and annealed bands, strong α-fiber and weak γ-fiber textures were formed; the cold rolled textures were comprised of sharp α-fiber and weak γ-fiber with the major component at {111}<110>, and inhomogeneous γ-fiber dominated by {111}<112> was formed after recrystallization annealing. By contrast, in the centre layer of warm rolled bands, the texture was comprised of weak α-fiber and sharp γ-fiber, and γ-fiber became the only component after annealing. The cold rolled texture displayed a sharp γ-fiber with the major component at {111}<112> and the intensity of γ-fiber close to that of α-fiber, resulting in the formation of a nearly homogeneous γ-fiber recrystallization texture in the center layer of the final sheet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号