首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
采用溶胶-凝胶法(sol—gel)制备掺0-20mol%Er^3 勃姆石(γ-AlOOH)凝胶,X射线衍射和差热分析法研究掺Er^3 :γ—AlOOH凝胶在950-1400℃烧结的相变过程.结果表明:Er^3 的掺杂降低α相的生长速度,抑制Al2O3的θ→α相变,推迟相变结束温度50-70℃,Er-Al-O系化合物Al10Er6O24和ErAlO3相的析出取决于掺Er^3 浓度和烧结温度.在较高烧结温度下,ErAlO3相由掺1-5mol%Er^3 :Al2O3中析出;Al10Er6O24相则在掺5-20mol%Er^3 :Al2O3中析出,随着烧结温度的升高,在全部掺Er^3 :Al2O3中析出.ErAlO3相促进θ→α相变的形核,α相形核起始温度可提前30-50℃,但对α相生长影响不大.Al10Er6O24相对θ→α相变没有显著影响.  相似文献   

2.
以钛酸正丁酯为前驱体,乙酰丙酮为络合剂,70℃下进行对前驱体改性的络合反应,获得改性前驱体Ti(O-Bu)4-x(AcAc)x.以异丙醇为溶剂,采用溶胶-凝胶(sol-gel)法制备0-3%(摩尔分数)Er^3+掺杂TiO2粉末。差热-热重(DTA-TG)分析结果表明,掺1%(摩尔分数)Er^3+:TiO2干凝胶粉末在烧结过程中,130-300℃之间出现两个放热峰,其余试样只出现一个放热峰,决定这一现象的结构因素同时也决定了材料中Er^3+相对较高的分散度,X射线衍射(XRD)分析表明,700℃烧结所得的掺0-3%(摩尔分数)Er^3+:TiO2粉末,当Er^3+掺杂浓度为0.1%(摩尔分数)和1%(摩尔分数)时,粉末均为锐钛矿与金红石混合相,前者的金红石相衍射峰更明显;掺3%(摩尔分数)Er^3+:TiO2粉末为单一锐钛矿相结构,700℃烧结,当Er^3+掺杂浓度在0-1%(摩尔分数)范围内时,粉末PL强度随Er^3+掺杂浓度提高而增强;继续增加Er^3+掺杂浓度至3%(摩尔分数)过程中,粉末PL强度明显减弱。  相似文献   

3.
以钛酸正丁酯为前驱体,乙酰丙酮为络合剂,分别在室温和70℃进行对前驱体改性的络合反应,获得改性前驱体Ti(O-Bu)4-x(AcAc)x.以异丙醇为溶剂,采用溶胶-凝胶(sol-gel)法制备0.1—3.0mol%Er^3+抖掺杂TiO2粉末.差热-热重(TG-DTA)分析结果表明,由室温络合改性前驱体制备的粉末,无定型到锐钛矿和锐钛矿到金红石的相变温度,较由70℃络合改性前驱体制备的粉末均升高40℃.X射线衍射(XRD)分析表明,700℃烧结,室温络合所得掺0.1-3.0mol%Er^3+:TiO2粉末为单一锐钛矿结构,70℃络合所得粉末为锐钛矿和少量金红石的混合相结构.400-800℃烧结,两种络合所得粉末均获得中心波长为1.53μm的多峰结构光致发光(PL)谱.其中,700℃烧结的粉末PL强度最强.70℃络合较室温络合的粉末PL强度可提高3倍.  相似文献   

4.
谭娜 《材料导报》2013,27(4):109-112
利用980nm泵浦光激发下Er3+/Yb3+共掺Al2O3光波导放大器的粒子数速率方程,研究了稀土离子掺杂浓度对Er3+/Yb3+共掺Al2O3光波导放大器光学增益的影响。在此模型中,充分考虑到受激吸收、受激发射、自发辐射、能量转移等过程,揭示了稀土离子掺杂浓度和光学增益之间的紧密关系。结果表明,适量Yb3+的共掺杂能够显著提高Al2O3光波导放大器的光学增益。光波导放大器中Er3+/Yb3+的最佳共掺杂浓度不是固定值,受到泵浦功率、光波导放大器长度等因素影响,揭示了各有关报道中最佳掺杂浓度结果不一致的原因。  相似文献   

5.
采用高温固相反应法制备了不同浓度Sm^3+掺杂的CeO2荧光粉,样品粉末在紫外激发下发出明亮的橙红色光。利用X射线衍射(XRD)和光致荧光光谱(PL)对样品进行了表征,结果表明样品在掺杂浓度小于4mol%时,Sm^3+离子完全替代Ce^4+离子进入基质CeO2的晶格而形成Ce1-xSmxO2固溶体。PL谱表明Sm^3+的发射峰强度最初随Sm^3+掺杂浓度提高而迅速增强,在Sm^3+掺杂浓度为1mol%达到极大,随后出现浓度猝灭。  相似文献   

6.
纳米Y2O3:Eu3+粉体荧光强度的增强   总被引:9,自引:0,他引:9  
本文采用化学合成手段制备了不同粒径和Ey3+掺杂浓度的纳米Y2O3:Eu3+粉体,并采用包膜的方法对纳米粉体进行表面处理.通过对荧光性能的研究,发现纳米Y2O3:Eu3+粉体的激活剂临界浓度明显提高,并导致材料的荧光强度明显增强.另外,经包膜处理的纳米Y2O3:Eu3+粉体,由于有效地消除了表面悬空键,荧光强度获得进一步提高  相似文献   

7.
掺Er3+氟铅硅酸盐玻璃的光谱性质和热稳定性研究   总被引:1,自引:0,他引:1  
制备了掺Er^3 氟铅硅酸盐玻璃,研究了玻璃的物理性质、热稳定性、吸收光谱、荧光光谱和荧光寿命,应用McCumber理论,计算了能级^4I13/2→^4I15/2跃迁的吸收和受激发射截面.结果表明:以PbF2等分子替代PbO含量,样品密度、折射率、热稳定性、吸收截面和受激发射截面降低,但荧光半高宽和荧光寿命增加,对Er^3 离子在不同玻璃基质中带宽特性的比较发现,Er^3 掺杂50SiO2—50PbF2玻璃的带宽特性与碲酸盐和铋酸盐玻璃相当,大于磷酸盐,锗酸盐和硅酸盐玻璃,表明掺Er^3 氟铅硅酸盐玻璃可作为宽带光纤放大器的基质材料。  相似文献   

8.
制备了掺铒的玻璃样品TeO2-WO3-La2O3.测试了样品的吸收光谱、荧光光谱以及玻璃的热稳定性.应用Juddo-Ofelt理论计算了玻璃的三个强度参数Ωt(t=2、4、6),电偶极跃迁谱线强度以及磁偶极跃迁谱线强度,分析了强度参数Ω2和玻璃成分变化的关系.应用McCumber理论计算了Er^3+在1.5μm处的受激发射截面.TeO2-WO3-La2O3玻璃在La2O3的含量〉5mol%时,未发现析晶开始温度(Tx),说明这种玻璃材料适合于光纤的拉制.研究结果表明TeO2-WO3-La2O3是制备宽带光纤放大器的理想基质材料.  相似文献   

9.
沈彩  刘庆峰  刘茜 《无机材料学报》2004,19(6):1339-1344
以硝酸钡、硝酸锶、钛酸四丁脂、硝酸铜、硝酸镧以及氨水为原料,利用柠檬酸一硝酸盐燃烧法制备了Ba0.5Sr0.5TiO3(BST)、1mol%Cu^2 掺杂BST、1mol%La^3 掺杂BST,以及0.5mol%Cu^2 和0.5mol%La^3 共掺杂BST粉末.利用脉冲电流(简称PECS)烧结设备烧结所制备的粉体,结果发现掺杂可以大大改善BST陶瓷晶粒大小的均匀性.介电性能测试结果表明1mol%Cu^2 掺杂不仅降低了BST的介电损耗,同时也降低了介电常数,而1mol%La^3 掺杂,以及0.5mol%Cu^2 和0.5mol%La^3 共掺杂降低了BST的介电损耗,但在25℃附近介电常数升高.  相似文献   

10.
Al2O3掺杂对YSZ固体电解质烧结及电性能的影响   总被引:5,自引:0,他引:5  
研究了用常规共沉淀法掺杂Al2O3对YSZ固体电解质的烧结及电性能的影响.结果表明:适量的Al2O3能提高YSZ材料的烧结性能,促使其致密化,但过量的Al2O3对材料的致密化不利;同时,材料的晶界电导随Al2O3含量的增大表现出先增大后减小的变化趋势,这与Al2O3对YSZ晶界两方面的不同影响有关,Al2O3偏析于晶界一方面能清除晶界上对氧离子电导不利的SiO2,但另一方面也会降低晶界空间电荷层中的自由氧离子空穴的浓度.  相似文献   

11.
纳米Y2O3:Eu3+的荧光特性   总被引:25,自引:3,他引:25  
本文采用均相沉淀法制备纳米Y2O3:Eu^3+,并控制反应条件,得到不同粒径的生粉,与非纳米粉体相比。纳米Y2O3:Eu^3+的X-ray衍射粉变宽,2θ角增大,同时发射光谱存在蓝移现现象,谱峰波长及强度与粒径有密切联系。  相似文献   

12.
系统研究了Mn位替代的La0.67Ca0.33Mn1-xAlxO3体系的结构和输运特性.结果表明,随Al3+替代含量的增加,在整个替代范围内,晶胞体积表现出单调减小的规律.而体系的电阻率急剧增加,绝缘体-金属转变温度TIM向低温方向移动,且与Al3+替代含量存在线性关联.对少量Al3+替代含量,在T>TIM的高温区域体系的输运特性满足热激活模型,在T<TIM的低温区域满足金属输运行为.这种输运行为随Al3+替代的变化特征,可从Al3+离子对Mn3+-O2--Mn4+双交换通道的破坏和所导致的晶格畸变方面给予解释, Al3+替代改变了电子的局域环境,进而影响到体系的输运行为.  相似文献   

13.
在对不同PbF2呈的Pr^3+/Yb^3+共拓的ZBLAPN玻璃的差热分析后同烧结发现含PbF2大于4.5%后,差热曲线上的析晶峰出现分裂,经扫描电镜分析,含铜量高的玻璃中出现了分相,各相所含铅量不同,这引起玻璃热稳定下降。  相似文献   

14.
自变频激光晶体Nd3+:GdAl3(BO3)4的研究   总被引:1,自引:0,他引:1  
采用熔盐法生长出尺寸为30mm的Nd3+:GdAl3(BO3)4优质晶体,进行了吸收光谱和荧光光谱的测定研究,计算得到晶体发射截面为σe1061.9=2.9×10-19cm2和σe1338mm=5.5×10-20cm2.采用染料激光器作为泵浦源,对晶体进行了自变频激光实验研究,在紫外可调谐(378-382nm)、绿光531nm、蓝光(436-443nm)、红光(669nm)和红外可调谐(1305-1365nm)波段实现了激光输出,输出的最大功率分别为:105μJ/脉冲、119.5μJ/脉冲、445μJ/脉冲、19μJ/脉冲和31μJ/脉冲.  相似文献   

15.
以菱镁矿风化石、工业Al2O3和SiO2微粉为原料, 固相反应烧结合成制备堇青石。通过在反应物中分别加入不同含量的Eu2O3、Dy2O3和Er2O3, 研究分析和对比了Eu3+、Dy3+和Er3+对堇青石晶相组成、晶粒大小、晶胞常数、结晶度及显微结构的影响。采用XRD和SEM表征试样中的晶相和显微结构, 利用X'Pert Plus软件对结晶相的晶胞参数和结晶度进行分析, 采用半定量法对试样晶相组成进行计算, 利用Scherrer公式计算堇青石的晶粒大小。结果表明: 由于Eu2O3、Dy2O3和Er2O3的加入, 通过固相反应烧结所得堇青石试样中出现了莫来石相, Eu3+、Dy3+和Er3+对Mg2+的置换作用改变了堇青石相晶格常数和晶胞体积。随着添加剂含量的增加, 堇青石结构中液相量增加, 相对结晶度降低, 常温致密度提高, 堇青石晶粒粒径减小。综合对比分析, Eu2O3对堇青石晶相转变的影响程度最弱, Er2O3对堇青石晶相转变的影响程度最强, 对提高合成堇青石的烧结性和热震稳定性效果最好。  相似文献   

16.
In3+Nb5+双取代钙钛矿型锂快离子导体Li3xLa0.67-xTiO3的研究   总被引:1,自引:0,他引:1  
连惠婷  李荣华  王文继 《功能材料》2006,37(10):1575-1577
以Li3xLa0.67-xTiO3为母体,通过掺杂经高温固相反应制得了一系列新的锂快离子导体材料Li3xLa0.67-xInyTi1-2yNbyO3.利用X射线衍射分析和交流阻抗技术研究该系统的组成结构和电化学性能.结果表明体系合成温度降低,分解电压提高了;在x=0.10,y<0.050时,合成物为单一的钙钛矿固溶体,y≥0.050时,则存在In2O3杂相;该体系合成物在室温下有较高的电导率,可达5.81×10-4S/cm,活化能在20~30kJ/mol之间.  相似文献   

17.
纳米Y2O3:Eu3+粉体的表面包膜处理   总被引:11,自引:1,他引:11  
本文采用高分子网络凝胶法制备了粒径约为20mm的纳米Y2O3:Eu^3+粉体,并采用KAl(SO4)2及Na2SiO3溶液进行表面包膜处理。  相似文献   

18.
采用高温熔融法制备了Sm3+/Ce3+/Tb3+共掺杂的CaO-B2O3-SiO2发光玻璃材料,并用荧光分光光度计和CIE色度坐标对其发光性能进行了研究。发射光谱表明,在374nm激发下,Sm3+/Ce3+/Tb3+共掺杂CaO-B2O3-SiO2发光玻璃的发射光谱中同时观测到了红橙光、蓝光和绿光的发射带,这些发射带的混合实现了白光发射。此外,在Sm2O3和Tb4O7含量不变的情况下,随着CeO2含量的减小,Sm3+/Ce3+/Tb3+共掺杂发光玻璃的发光颜色在白光区逐渐由蓝光区附近过渡到黄光区附近。  相似文献   

19.
Yb3+掺杂SiO2-Bi2O3-B2O3玻璃的物理性质及光谱性质   总被引:2,自引:0,他引:2  
选取玻璃组分60SiO2-xBi2O3-(30-x)B2O3-2K2O-7Na2O-1Yb2O3(以mo1%记,x=0,5,10,15,20,25,30)为研究对象.通过测试试样的物理性质和光谱性质,应用倒易法(reciprocity method)计算Yb^3 离子的受激发射截面(σeml),并且计算了Yb^3 的自发辐射几率(Arad),2F5/2能级的辐射寿命(Trad).讨论了玻璃中Bi2O3和B2O3的组成变化对其物理性质、Yb^3 离子的吸收特性、发光特性以及OH^-离子对实测Yb^3 荧光寿命(Tf)的影响.结果表明:Yb^3 掺杂的SiO2-Bi2O3-B2O3具有较好的光谱性能,是一种新型的Yb^3 掺杂双包层光纤候选基质材料.  相似文献   

20.
溶胶-冷冻法制备纳米Gd2O3:Eu3+发光材料   总被引:6,自引:0,他引:6  
采用溶胶-冷冻法合成了粒径为20nm左右的近似于球形的Gd2O3:Eu^3+发光材料.XRD和FTIR分析表明:所合成的前驱体样品为带有结晶水的晶态氢氧化物,经过热处理后得到了立方相的Gd2O3.荧光光谱测试表明:所合成的样品具有良好的Eu^3+特征红光发射,Gd^3+到Eu^3+之间具有有效的能量传递过程.随着灼烧温度的升高,发射峰和激发峰的强度有所增强,荧光寿命变长,这是由于热处理温度升高,晶体生长变好,表面缺陷减少,使表面的猝灭中心减少,从而提高了荧光强度和荧光寿命.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号