首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Real world source coding algorithms usually leave a certain amount of redundancy within the coded bit stream. Shannon (1948) already mentioned that this redundancy can be exploited at the receiver side to achieve a higher robustness against channel errors. We show how joint source-channel decoding can be performed in a way that is applicable to any mobile communication system standard. Considerable gains in terms of bit error rate or signal-to-noise ratio (SNR) are possible dependent on the amount of redundancy. However, an even better performance can be achieved by changing also the transmitter sided source and channel encoders. We propose an encoding concept employing low-dimensional quantization. Keeping the gross bit rate as well as the clean channel quality the same, it decreases the complexity of the source encoder and the decoder significantly. Finally, we give an application of our methods to spectral coefficient coding in speech transmission over a Rayleigh fading channel resulting in channel SNR gains of about 2 dB as compared to state-of-the-art (de-)coding and bad frame handling methods  相似文献   

2.
In this paper, we present a characterization, through its convergence analysis, and an optimisation of a joint source-channel receiver composed of a LDPC decoder and a Soft Input Soft Output (SISO) source decoder. Under Gaussian approximation, assuming the knowledge of the extrinsic mutual information transfer function (EXIT chart) of the source decoder, we derive the Mutual Information evolution equations, that semianalytically describe the convergence of the iterative system behavior and, to complete the study, the stability condition at the convergence fixed point is derived for the joint receiver. From this analysis, a general optimisation method of the irregularity of the LDPC codes is proposed, which can be reduced to a linear programming optimisation problem. Simulation results show improved performance when compared to an AWGN optimized LDPC code.  相似文献   

3.
刘军清  李天昊 《通信学报》2007,28(9):112-118
对信源信道自适应联合编码方法进行了研究,提出了一种新的基于纠错算术码的联合信源信道编解码系统。该系统在编码端利用算术码内嵌禁用符号实现信源信道一体式编码,即利用马尔科夫信源模型和根据信道状态信息自适应地调整禁用符号概率大小从而调整编码码率来实现信道自适应;在解码端,推导出了基于MAP的解码测度数学公式并基于此测度公式提出了一种改进的堆栈序列估计算法。与传统的信道自适应编码算法不同,该自适应编码算法只需调整一个参数:禁用符号,且理论上可获得连续可变的编码码率。实验结果表明,与经典的Grangetto联合编码系统以及分离编码系统相比,所提出的编码系统具有明显改善的性能增益。  相似文献   

4.
In this paper, a new still image coding scheme is presented. In contrast with standard tandem coding schemes, where the redundancy is introduced after source coding, it is introduced before source coding using real BCH codes. A joint channel model is first presented. The model corresponds to a memoryless mixture of Gaussian and Bernoulli-Gaussian noise. It may represent the source coder, the channel coder, the physical channel, and their corresponding decoder. Decoding algorithms are derived from this channel model and compared to a state-of-art real BCH decoding scheme. A further comparison with two reference tandem coding schemes and the proposed joint coding scheme for the robust transmission of still images has been presented. When the tandem scheme is not accurately tuned, the joint coding scheme outperforms the tandem scheme in all situations. Compared to a tandem scheme well tuned for a given channel situation, the joint coding scheme shows an increased robustness as the channel conditions worsen. The soft performance degradation observed when the channel worsens gives an additional advantage to the joint source-channel coding scheme for fading channels, since a reconstruction with moderate quality may be still possible, even if the channel is in a deep fade.  相似文献   

5.
We present a novel symbol-based soft-input a posteriori probability (APP) decoder for packetized variable-length encoded source indexes transmitted over wireless channels where the residual redundancy after source encoding is exploited for error protection. In combination with a mean-square or maximum APP estimation of the reconstructed source data, the whole decoding process is close to optimal. Furthermore, solutions for the proposed APP decoder with reduced complexity are discussed and compared to the near-optimal solution. When, in addition, channel codes are employed for protecting the variable-length encoded data, an iterative source-channel decoder can be obtained in the same way as for serially concatenated codes, where the proposed APP source decoder then represents one of the two constituent decoders. The simulation results show that this iterative decoding technique leads to substantial error protection for variable-length encoded correlated source signals, especially, when they are transmitted over highly corrupted channels.  相似文献   

6.
Several recent publications have shown that joint source-channel decoding could be a powerful technique to take advantage of residual source redundancy for fixed- and variable-length source codes. This letter gives an in-depth analysis of a low-complexity method recently proposed by Guivarch et al., where the redundancy left by a Huffman encoder is used at a bit level in the channel decoder to improve its performance. Several simulation results are presented, showing for two first-order Markov sources of different sizes that using a priori knowledge of the source statistics yields a significant improvement, either with a Viterbi channel decoder or with a turbo decoder.  相似文献   

7.
Variable length codes (VLCs), used in data compression, are very sensitive to error propagation in the presence of noisy channels. To address this problem, several joint sourcechannel turbo techniques have been proposed in the literature. In this paper, we focus on pairs of source/VLC of low redundancy, i.e., when there is a good match between the source statistics and the length distribution of the VLC. It is a case not considered extensively in the literature so far and the classical concatenation of a VLC and a convolutional code is not satisfying. Through EXIT chart and interleaving gain analysis, we show that the introduction of a repetition code between the VLC and the convolutional code considerably improves global performance. In particular, excellent symbol error rates are obtained with reversible VLCs which are used in recent source codecs.  相似文献   

8.
A joint source-channel hybrid digital-analog (HDA) vector quantization (VQ) system is presented. The main advantage of the new VQ-based HDA system is that it achieves excellent rate-distortion-capacity performance at the design signal-to-noise ratio (SNR) while maintaining a "graceful improvement" characteristic at higher SNRs. It is demonstrated that, within the HDA framework, the parameters of the system can be optimized using an iterative procedure similar to that of channel-optimized vector quantizer design. Comparisons are made with three purely digital systems and one purely analog system. It is found that, at high SNRs, the VQ-based HDA system is superior to the other investigated systems. At low SNRs, the performance of the new scheme can be improved using the optimization procedure and using soft decoding in the digital part of the system. These results demonstrate that the introduced scheme provides an attractive method for terrestrial broadcasting applications  相似文献   

9.
This paper studies oversampled filterbanks for robust transmission of multimedia signals over erasure channels. Oversampled filterbanks implement frame expansions of signals in l/sup 2/(Z). The dependencies between the expansion coefficients introduced by the oversampled filterbank are first characterized both in the z-domain and in the time-domain. Conditions for recovery of some typical erasure patterns like bursty erasure patterns are derived. The analysis leads to the design of two erasure recovery algorithms that are first studied without quantization noise. The reconstruction algorithm derived from the time-domain analysis exploits the fact that an oversampled filterbank represents signals with more than one set of basis functions. The erased samples are first reconstructed from the received ones, and then, signal space projection is applied. The effect of quantization noise on the reconstructed signal is studied for both algorithms. Using image signals, the theoretical results are validated for a number of erasure patterns, considering unequal error protection enabled tree-structured decompositions.  相似文献   

10.
11.
Efficient compression of finite-alphabet sources requires variable-length codes (VLCs). However, in the presence of noisy channels, error propagation in the decoding of VLCs severely degrades performance. To address this problem, redundant entropy codes and iterative source-channel decoding have been suggested, but to date, neither performance bounds nor design criteria for the composite system have been available. We calculate performance bounds for the source-channel system by generalizing techniques originally developed for serial concatenated convolutional codes. Using this analysis, we demonstrate the role of a recursive structure for the inner code and the distance properties of the outer code. We use density evolution to study the convergence of our decoders. Finally, we pose the question: Under a fixed rate and complexity constraint, when should we use source-channel decoding (as opposed to separable decoding)? We offer answers in several specific cases. For our analysis and design rules, we use union bounds that are technically valid only above the cutoff rate, but interestingly, the codes designed with union-bound criteria perform well even in low signal-to-noise ratio regions, as shown by our simulations as well as previous works on concatenated codes.  相似文献   

12.
13.
We consider efficiently transmitting video over a hybrid wireless/wire-line network by optimally allocating resources across multiple protocol layers. Specifically, we present a framework of joint source-channel coding and power adaptation, where error resilient source coding, channel coding, and transmission power adaptation are jointly designed to optimize video quality given constraints on the total transmission energy and delay for each video frame. In particular, we consider the combination of two types of channel coding—inter-packet coding (at the transport layer) to provide protection against packet dropping in the wire-line network and intra-packet coding (at the link layer) to provide protection against bit errors in the wireless link. In both cases, we allow the coding rate to be adaptive to provide unequal error protection at both the packet and frame level. In addition to both types of channel coding, we also compensate for channel errors by adapting the transmission power used to send each packet. An efficient algorithm based on Lagrangian relaxation and the method of alternating variables is proposed to solve the resulting optimization problem. Simulation results are shown to illustrate the advantages of joint optimization across multiple layers.  相似文献   

14.
On robust and dynamic identifying codes   总被引:1,自引:0,他引:1  
A subset C of vertices in an undirected graph G=(V,E) is called a 1-identifying code if the sets I(v)={u/spl isin/C:d(u,v)/spl les/1}, v/spl isin/V, are nonempty and no two of them are the same set. It is natural to consider classes of codes that retain the identification property under various conditions, e.g., when the sets I(v) are possibly slightly corrupted. We consider two such classes of robust codes. We also consider dynamic identifying codes, i.e., walks in G whose vertices form an identifying code in G.  相似文献   

15.
We apply low-density parity-check (LDPC) codes to a bandwidth-efficient modulation scheme using multilevel coding, multistage decoding, and trellis-based signal shaping. Performance results based on density evolution and simulations are presented. Using irregular LDPC component codes of block length 10/sup 5/ and a 64-quadrature amplitude modulation signal constellation operating at 2 bits/dimension, a bit-error rate of 10/sup -5/ is achieved at an E/sub b//N/sub 0/ of 6.55 dB. At this value of E/sub b//N/sub 0/, the Shannon channel capacity, computed assuming equally likely signaling, is below 2 bits/dimension.  相似文献   

16.
17.
We consider the problem of lossy joint source-channel coding in a communication system where the encoder has access to channel state information (CSI) and the decoder has access to side information that is correlated to the source. This configuration combines the Wyner-Ziv (1976) model of pure lossy source coding with side information at the decoder and the Shannon/Gel'fand-Pinsker (1958, 1980) model of pure channel coding with CSI at the encoder. We prove a separation theorem for this communication system, which asserts that there is no loss in asymptotic optimality in applying, first, an optimal Wyner-Ziv source code and, then, an optimal Gel'fand-Pinsker channel code. We then derive conditions for the optimality of a symbol-by-symbol (scalar) source-channel code, and demonstrate situations where these conditions are met. Finally, we discuss a few practical applications, including overlaid communication where the model under discussion is useful.  相似文献   

18.
A joint source-channel decoding (JSCD) scheme which exploits the combined a priori information of source and channel in an iterative manner is proposed. A sequence minimum mean-square error (SMMSE) estimator based on bit or symbol error transition probability of the channel with memory is proposed and used in the iterative decoding process. Simulation results show that our proposed scheme leads to significant improvement over the scheme without using the a priori information of the source or channel.  相似文献   

19.
It has long been known that for a mean-square error distortion measure the Gaussian distribution requires the largest rate of all sources of a given variance. It has also been stated that a code designed for the Gaussian source and yielding distortiondwhen used with a Gaussian source will yield distortionleq dwhen used with any independent-letter source of the same variance. In this paper, we extend these results in two directions: a) instead of assuming that the source has a fixed variance, we fix an arbitrary moment; b) instead of mean-square error distortion measures, we consider nearly arbitrary continuous difference distortion measures. For each moment constraint, we show that there is a given distribution that has the largest rate for (nearly) any difference distortion measure and that a code designed for this source yielding distortiondyields distortionleq dfor any ergodic source satisfying the same moment constraint. Furthermore, digital encoding of the output of this encoder may yield a lower rate when this encoder is used with a source for which it was not designed. We also extend these results to the case of a random process or random field of known correlation function under a difference distortion measure.  相似文献   

20.
We define the complete joint weight enumerator in genus g for codes over /spl Zopf//sub 2k/ and use it to study self-dual codes and their shadows. These weight enumerators are related to the theta series of the associated lattices and Siegel and Jacobi forms are formed from these series.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号