共查询到20条相似文献,搜索用时 15 毫秒
1.
为研究不同长径比煤样动态压缩下能量耗散规律和破碎分形特征,采用?50 mm分离式霍普金森压杆(Split Hopkinson Pressure Bars, SHPB)试验系统,以相同冲击气压0.35 MPa对直径50 mm,长径比分别为0.3,0.4,0.5,0.6,0.7,0.8,0.9和1.0的煤样进行单轴冲击压缩试验,定义了可判定应力平衡状态的指标——应力平衡系数ξ,发现了能量耗散的长径比效应并讨论了其与应力平衡的关系,分析了长径比和耗能密度对煤样破碎分形特征的影响。研究结果表明:不同长径比煤样应力-应变曲线形态基本一致,均包含弹性阶段、塑性阶段和破坏阶段3个阶段,随长径比增加,曲线塑性阶段增大;根据应力平衡系数ξ确定煤样的临界长径比为0.6,低于临界长径比的试件易达到应力平衡,超过临界长径比试件将难以在破坏前达成应力平衡;煤样动态压缩破碎耗能与耗能占比的长径比效应表现为:随长径比增加分2个阶段,且其分界点接近临界长径比,各阶段内呈线性增加关系,阶段间呈台阶式下降;试件尺寸增加引起原生缺陷摩擦耗能增加和端部摩擦效应增强,超过临界长径比的试件应力达到峰值前其变形量降低形成了破碎耗能... 相似文献
2.
3.
4.
为了探究高径比对岩石能量积聚与耗散的影响,利用RMT-150B岩石力学测试系统对同直径不同长度的砂岩试件进行了单轴压缩试验、单轴循环加卸载试验以及单轴分级加卸载试验。对比砂岩单轴压缩与单轴循环加卸载曲线发现,单轴压缩曲线近似为单轴分级加卸载曲线的外包络线,并且由于“硬化”作用单轴分级加卸载强度略高于单轴压缩。通过砂岩单轴循环加卸载下力学特性分析发现随着循环次数增多,残余变形逐渐减小,直至某次循环无残余变形产生砂岩出现非线性伪弹性体特征,继续承受加卸载作用非线性伪弹性体特性消失,残余变形再次出现,因此可以将残余变形演化规律归纳为:存在较大残余变形—残余变形逐渐减小—无残余变形—再次出现残余变形。基于砂岩弹性能的演化分析发现循环次数对弹性能的影响较小,即疲劳损伤对砂岩的弹性能影响较小,则可以假定单轴分级加卸载各卸载点的荷载与单轴压缩试验的荷载相等时,两者的弹性能也相等。利用单轴分级加卸载试验各卸载点的弹性能与单轴循环加卸载首次加卸载弹性能进行比较,验证了假设的正确性。进一步对不同高径比(L/D)下砂岩的单轴压缩试验进行能量分析,发现砂岩的弹性能演化服从线性储能规律。基于砂岩的单轴分级加卸载... 相似文献
5.
以巷道围岩施工过程中受到多次动荷载扰动而变形失稳为背景,利用分离式霍普金森斯压杆对砂岩开展5种冲击气压下的循环冲击试验,探究循环冲击作用下砂岩动力学特性及能量耗散特征。试验结果表明:在较大冲击气压作用下,峰值应力随着冲击次数的增加呈线性下降趋势,峰值应变和平均应变率则随着冲击次数的增加呈线性增长趋势;而在较小冲击气压作用下,随着冲击次数的增加,峰值应力先缓慢下降然后陡降,峰值应变和平均应变率则先缓慢增加然后陡增;随着冲击次数的增加,试件裂纹不断萌生扩展,试件主要呈劈裂破坏,单位体积吸收能表现为两阶段变化趋势,累计比能量吸收能不断增加。 相似文献
6.
为研究冲击荷载作用下岩石能量吸收与破碎分形特征,应用霍普金森试验系统对0.6、0.8、1.0、1.2、1.4长径比花岗岩进行动态冲击试验,分析了应变率效应和尺寸效应对花岗岩试件的破碎能耗和破坏形态的影响;在考虑时间因素的基础上,提出一种新的能时密度指标来评价能量耗散,结合分形维数计算与能时密度分析,研究岩石在冲击过程中的能时密度与分形特征。结果表明:0.6 ~ 1.4长径比花岗岩试件的应变率和能时密度均符合乘幂关系,同种长径比试件的能时密度随应变率增大呈递增趋势;在48.8 ~124.2 s-1应变率区间内,分形维数随应变率增加显著增大;花岗岩试件在动荷载下的能时密度和分形维数符合乘幂关系,单位时间内岩石吸收能量越多,分形特征就越明显;引用能时密度结合岩石破碎块度的分形维数计算,能够定量研究岩石单位时间内的能量吸收规律。 相似文献
7.
基于煤的冲击倾向性测定方法进行预制钻孔煤样单轴加载试验,研究钻孔煤样的冲击倾向性变化规律,引入破碎颗粒分形维数与新增表面积,分析钻孔煤样破碎过程中的能量耗散规律。结果表明:(1)钻孔使试样以剪切劈裂破坏形式转变为在孔洞两侧孕育、融合裂隙并在岩桥之间产生贯穿裂纹的破坏形式,同时伴随塌孔现象。随钻孔排数增多,钻孔试样呈现出应力峰前塑性损伤逐渐增大,峰值强度降低、积聚弹性能减少,峰后破坏耗时延长、耗能提升的趋势,且单轴抗压强度、冲击能量指数、弹性能量指数均逐渐降低,动态破坏时间显著升高,冲击倾向性逐渐减弱。(2)试样破碎颗粒分形维数与新增表面积具有良好的负相关性:试样破碎程度越低,分形维数越高,新增表面积越小。(3)试样应力峰前能量的输入、耗散与新增表面积无明显关系。峰后能量释放及耗散规律与破碎颗粒新增表面积变化规律一致,新增表面积越大则峰后耗能越多。受加载速率及钻孔布置影响峰后能量差值与新增表面积变化呈"U"形变化趋势。钻孔减缓了试样峰后能量释放与能量耗散速率,且二者降低幅值较为相近,单孔试样降低约17.0%,双孔试样降低约68.3%,三孔试样降低约70.8%。钻孔卸压可以降低峰前积聚的应... 相似文献
8.
9.
为研究玄武岩在循环冲击作用下的能耗特征及损伤,采用带围压装置的霍普金森压杆(SHPB)系统设置5种冲击气压梯度对玄武岩试样开展单轴冲击试验和两种围压状态下的循环冲击试验。研究发现,随着循环次数增加,试样单位体积吸收能呈现前期匀速缓慢增长,临近破碎时增长速率急剧攀升的趋势,玄武岩试样单位体积吸收能与冲击气压值呈正相关;施加围压可大大增加玄武岩抵抗外部冲击的能力,破碎时累计比能量吸收值比无围压状态提升10倍以上;随着循环冲击次数的增加,损伤因子D先匀速上升,而后上升速率加大,临近破碎时,岩石吸能效率下降,损伤因子又趋于平稳;损伤因子D达到0.4左右时,玄武岩试样出现较为明显的剪切裂纹。 相似文献
10.
在非平衡热力学和耗散结构理论的基础上,研究了冲击地压孕育过程中“煤-围岩”系统能量耗散特征和系统内熵的变化,初步建立了基于非平衡态热力学的冲击地压失稳判断方法;采用X射线衍射、顺磁共振、扫描电镜、显微组分测定等实验手段,获得了冲击地压发生前后煤岩样的细观结构差异,探求了冲击地压孕育、发生过程中能量耗散细观特征。研究发现:冲击地压是煤岩体内能量的涨落达到一定值后出现的自组织现象,其孕育过程是煤岩储能和耗能竞争的过程,该过程中强烈的挤压和剪切力加强了煤微元环缩合作用和拼叠作用,使煤超前演化,并促使煤岩内宏观裂纹非稳定扩展,加速了能量耗散的物理和化学的不可逆过程。 相似文献
11.
《煤矿安全》2021,52(4):1-6
利用DDL600电子万能试验机和自主研发的破碎岩石压实装置,采用分级加载方式对不同相对湿度下的级配破碎煤样进行单轴侧限压缩试验,通过筛分和称重各粒径煤样计算出粒度分形维数,分析各级轴向应力下破碎煤样的粒径分布特征,并根据能量耗散模型计算出破碎能量耗散率,探究加载过程中破碎煤样的能量耗散率规律。结果表明:煤样破碎过程中分形维数与加载应力满足对数关系,初始级配对分形维数变化的影响随加载应力的增大而减小,且相对湿度的增加会降低分形维数;相对湿度通过减少破碎发生而减小了煤样的能量耗散,其能量耗散率的变化区间为30%~42%;煤样的能量耗散率随分形维数呈先增大后减小的趋势,且湿度越大能量耗散率到达峰值时的分形维数越小,能耗率变化越突出。 相似文献
12.
为研究热处理后花岗岩动态拉伸特性及能量耗散规律,利用分离式霍普金森压杆(SHPB)装置,分别对常温(25℃)和经历200~800℃热处理后的花岗岩试样进行3组冲击速度下的动态劈裂拉伸试验,探讨温度、冲击速度与花岗岩动态拉伸强度及能量之间的关系。结果表明:在冲击速度一定时,随着温度的增加,试样拉伸强度整体呈下降趋势;在温度一定时,试样的动态拉伸强度随着应变率的增加逐渐增大;试样的耗散能在劈裂荷载作用下经历4个阶段:压密阶段、弹性阶段、屈服损伤阶段、完全破坏阶段,且温度越高,用于试样破坏的能量越少,耗散能、能耗密度下降幅度越大;试样的破坏形态对温度的敏感程度高,即随着温度的升高,试样破碎程度加剧,碎块对称性消失,楔体效应更明显,塑性增强。 相似文献
13.
为研究煤样动态拉伸变形破坏过程中的能量耗散规律,利用分离式霍普金森杆冲击加载系统,对煤样进行冲击条件下巴西圆盘劈裂试验,探讨了冲击速度、层理倾角及饱和含水对煤样总吸收能密度、总耗散能密度和损伤变量的影响;同时将煤样破碎后产生粒径为0~0.2 mm和0.2~5 mm的碎屑进行收集,并对不同尺寸碎屑的分布特征进行了对比分析。研究表明:同一层理倾角的自然煤样损伤变量随着冲击速度的增加呈近似线性增加,饱水煤样损伤变量整体随冲击速度增大呈指数函数增加;相比于自然煤样,饱水煤样粒径为0~0.2 mm的碎屑量减少了14.1%~31.3%,粒径为0.2~5 mm的碎屑量减少了33.7%~53.0%;但当层理倾角为45°时,饱水煤样碎屑量质量百分比反而比自然煤样要大。 相似文献
14.
岩石破裂破碎实质是一个能量吸收与耗散的过程,煤矿岩巷钻爆掘进过程中,既要有足够的爆炸能量使待开挖区岩石破裂破碎和抛掷、形成空腔,又要控制爆炸能量对保留岩体造成的损伤,尤其是冲击荷载作用时强度较低的泥岩的动态响应特性更需要重点研究。以淮南矿区典型巷道泥岩为研究对象,利用直径50 mm分离式Hopkinson试验装置开展不同冲击气压下泥岩动态压缩试验,研究在冲击荷载作用下泥岩的动态力学性能和破裂破碎特征,重点研究动荷载作用下泥岩的能量耗散规律。为了进一步揭示泥岩动态破碎破裂与泥岩构成主要化学成分与细观结构之间的关系,对泥岩的静态物理力学性能进行了测试并进行泥岩的X射线荧光光谱(XRF)和X射线衍射(XRD)测试,确定其主要组分、化学和颗粒成份;同时采用放大1 000倍的电子数码显微镜对泥岩试件表面、断口进行放大观察,从岩石细观结构出发,通过对细观结构变化、物理与力学过程的分析研究了岩石的损伤及其演化。结果表明:泥岩的主要化学成分主要为Si O2,其次为Al2O3,Fe2O3,其力学强度低,物理性能指标差,在冲击荷载作用下,泥岩内部大量空隙缺陷(如空穴,位错,微裂隙等)动力学过程加剧,形成损伤;在应力波的持续作用下,大量的微损伤和微观不均匀处在试件内部进行复杂的演化,在颗粒内部结构、沿颗粒间裂缝和沿晶粒界会产生大量的微裂纹并发展,在构造边界碎片分层、夹杂物中也产生裂纹,泥岩试件最终产生环向断裂破坏和轴向劈裂拉伸破坏;试件吸收能、透射能和反射能均随入射能增加而增加,分别呈线性、对数和二次函数形式增长;试件吸收能可以用单位体积耗能密度、单位质量耗能和吸收阻抗比能表征,三者均随入射能增加呈线性增长,随应变率呈二次函数增长。 相似文献
15.
在煤矿巷道掘进过程中,巷道围岩在动载作用下变形将会增大,为研究煤系砂岩在冲击荷载作用下的力学特性及能量耗散,以河南陈四楼煤矿巷道围岩中的砂岩为研究对象,利用直径为50 mm的分离式霍普金森压杆试验装置对煤矿砂岩开展单轴单次冲击压缩试验和循环冲击压缩试验,对冲击荷载作用下煤矿砂岩的应变率效应、能量耗散特征和破坏模式等进行分析。研究结果表明:在单轴单次冲击荷载作用下,随着平均应变率的增加,砂岩试样的峰值应力和峰值应变均增大,割线模量逐渐降低,砂岩试样的塑性增加,强度提高;且峰值应变与平均应变率呈线性递增关系,峰值应力近似与平均应变率的1/3次幂呈递增关系;随着平均应变率的增加,砂岩试样的单位体积吸收能呈线性增加趋势,且试样破碎程度不断增大,在压应力持续作用下砂岩试样内部裂纹不断交叉扩展,沿轴向发生劈裂破坏。在循环冲击荷载作用下,随冲击荷载作用次数的增加,砂岩试样的平均应变率和峰值应变均逐渐增大,峰值应力、割线模量和第2类割线模量均随着冲击次数的增加而逐渐降低;在固定冲击气压下进行循环冲击时,随着冲击次数的增加,入射能基本保持不变,反射能和吸收能均逐渐增大,透射能逐渐减小,砂岩试样的单位体积... 相似文献
16.
利用中国矿业大学的“20 MN 伺服控制高温高压岩体三轴试验机”、大尺寸(200 mm×400 mm)花岗岩试样研究了花岗岩在高温高压状态下的冲击凿岩规律。研究结果表明,随着温度升高凿岩速度增大,当温度超过约150 ℃时,岩石裂隙数量增多,并且呈现出一定的塑性变形特征,不利于冲击能量的充分利用,冲击凿岩适用于钻进较低温度下(不超过150 ℃左右)的坚硬岩层;在高围压状态,冲击凿岩的单位破岩能耗随着温度升高而降低;在高温高压环境下,在一定钻压和冲击功率范围内,凿岩速度随着钻压或冲击功率的增大而增大,单位破岩能耗随着钻压的增大而减小。 相似文献
17.
为研究岩石受冲击荷载及岩石所处不同应力状态条件下其各能量变化特性,对炭质泥岩进行SHPB、一维及三维动静组合试验,研究冲击荷载下岩石处于不同应力状态时破坏形态与吸收能大小之间的关系,分析不同应力状态与其所对应岩石的破坏程度规律,研究相同应力状态下,冲击荷载与各能量及吸收能表征值关系,分析相同冲击荷载下,轴压、围压与各能量及吸收能表征值的影响规律,轴围压比值、差值与各能量及吸收能表征值关系,并定义敏感因子Q为轴压、围压与各吸收能表征值拟合函数一阶导函数为其对岩石吸收能的影响程度,探究轴压与围压对吸收能的影响程度规律。 相似文献
18.
为解决复采过程中不同尺寸遗留煤柱失稳致灾难以判定的问题,对不同高径比煤岩试件进行单轴加载实验,研究不同高径比对煤岩试件破坏形式、应力应变曲线形式、峰值强度、峰值应力、弹性模量的影响规律。结果表明:随着高径比的减小,试件的破坏形式由剪切破坏为主过渡为复杂破坏形式;峰值应力σmax和峰值应变εP随高径比的减小呈幂函数增大,两者间随高径比增加呈一次函数关系:εP=0.218σmax-2.465;弹性模量及割线模量随着高径比的减小而减小,其变化趋势服从二次函数; 0.8和1.5是引起煤岩试件力学参数变化速率改变的关键高径比,高径比小于0.8时,力学参数变化明显,而大于1.5后变化趋缓。上述结果可应用于不同宽高比煤柱稳定性的判定,提高了复采安全。 相似文献
19.
20.
在不同的冲击荷载下,岩石会破碎成不同尺寸的块体或颗粒。为了对动态荷载下岩石的吸能特性和动态破碎块体的尺度特征进行定量研究,采用分离式霍普金森压杆系统(SHPB)对煤矿深部砂岩进行了动态压缩试验。得到了不同冲击荷载下岩石试件的动态压缩强度规律,分析了入射能对试件吸收能的影响和应变率效应。在此基础上,利用3D扫描技术、数字图像处理技术得到破碎块体的三维扫描模型,探讨了砂岩试件破碎块体尺度特征与吸收能量的关系。研究表明:砂岩试件的动态抗压强度和吸收能都具有明显的应变率效应,动态抗压强度和动态应变率近似呈线性关系,而吸收能则呈指数型关系;在不同的入射能量下,试件吸收的能量有所不同,吸收能随入射能呈线性增长;在应变率为54~221.9s-1范围内,3D扫描技术能对砂岩破裂块体进行高精度数字重构;随着冲击荷载和输入能量的增大,试件破碎块体的形状逐渐丰富,破碎块体的粒径逐渐减小,比表面积逐渐增大,试件的破碎形态由大块体破断向小块体破碎转变。砂岩材料的破碎成形和能量耗散是材料的率效应机制。 相似文献