首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用典型的溶胶-凝胶法,在高镍LiNi0.8Co0.1Mn0.1O2正极颗粒表面包覆不同含量的Li3PO4锂离子导体。利用X射线衍射仪,扫描电镜对Li3PO4包覆前后的LiNi0.8Co0.1Mn0.1O2样品的晶体结构和微观形貌进行分析。结果表明,合成材料的层状结构明显,阳离子混排度低,并且Li3PO4成功包覆在LiNi0.8Co0.1Mn0.1O2颗粒表面。另外,对4个样品进行了首次充放电,倍率放电和循环性能比较,结果表明经过Li3PO4包覆后的正极材料的综合电化学性能明显比未包覆样品优越。首次库伦效率从未包覆样品的84.2%提高到2%(质量分数)Li3PO4包覆样品的89.2%。而且在5C高倍率,2%(质量分数)Li3PO4包覆LiNi0.8Co0.1Mn0.1O2的放电比容量是129.7 mAh/g,远远高于未包覆样品的92.6 mAh/g。同时,在常温和高温环境下循环100次后,2%(质量分数)Li3PO4包覆LiNi0.8Co0.1Mn0.1O2的容量保持率比未包覆样品分别高出7.1%和9.9%。  相似文献   

2.
高镍三元正极材料LiNi0.8Co0.1Mn0.1O2(NCM811)具有平台电位高、能量密度大、成本低等优点,在动力锂离子电池市场具有广阔的应用前景。然而,该材料存在阳离子混排、表面不稳定、热稳定性差等缺点,导致电池在使用过程中出现容量衰减快、循环性能差、安全性能低等问题,严重阻碍了其大规模应用综述了NCM811材料的结构特征、存在问题及改性研究进展,重点介绍了离子掺杂、表面包覆、结构设计等改性方法对其电化学性能的影响,并展望了其未来发展趋势和应用前景。  相似文献   

3.
通过改变煅烧过程中的气氛条件,以简单的固相法合成工艺获得了优异性能的LiNi0.8Co0.1Mn0.1O2(NCM811)材料,并探究了不同O2流量对样品的结构和电化学性能的影响。结果表明,当O2流量为0.1 L/min时,所合成的LiNi0.8Co0.1Mn0.1O2样品具有最低的阳离子混乱程度和较大的晶面间距。该样品在1 C、4.3 V下循环100次后的放电容量为174 mA·h·g?1,容量保持率高达98.3%;在更高的2 C倍率下循环100次后的保持率也达96.8%,并在高截止电压条件下表现良好。从实验结果还可得出,过低的O2流量不利于Ni2+转化为Ni3+,从而造成较高的阳离子混排度,而过高的O2流量则会使所合成LiNi0.8Co0.1Mn0.1O2材料的晶胞体积减小,不利于Li+的脱嵌。   相似文献   

4.
高镍正极材料LiNi0.6Co0.2Mn0.2O2(NCM622)由于比容量高、价格低等优点,被认为是最有前景的正极材料之一。在介绍NCM622存在的问题的基础上,分别从合成方法、改进措施等方面进行总结,并对NCM622的未来发展进行展望。  相似文献   

5.
高镍正极材料由于较高的比容量和性价比而受到关注, 但在循环过程中稳定性较差且安全性能不佳, 限制了其更广泛的应用。本研究结合微波辅助共沉淀与高温固相法制备高镍正极LiNi0.8Mn0.2O2二元材料, 再掺入不同比例的Co、Al对材料进行改性研究。结果表明, 改性后的材料性能明显改善, 特别是LiNi0.8Mn0.1Co0.08Al0.02O2在2.75~4.35 V、1C下循环100次后容量保持率达到91.39%, 在5C下放电比容量仍有160.03 mAh∙g-1, 并且掺杂后的材料具有较高的热稳定性, 安全性得到提升。其优异的循环保持率归因于Co、Al较好地抑制了循环过程中H2→H3相变的不可逆性对材料结构稳定性的破坏, 以及较弱的电极反应极化, 使电荷转移电阻降低。  相似文献   

6.
用去离子水将原始的LiNi0.8Co0.15Al0.05O2正极材料进行洗涤并分别在不同温度下处理相同的时间, 讨论了LiNi0.8Co0.15Al0.05O2正极材料结构、形貌以及电化学充放电性能的变化, 同时探讨了洗涤和热处理对材料结构、电化学充放电性能以及倍率性能影响的机理。XRD分析表明: 在洗涤和热处理之后, LiNi0.8Co0.15Al0.05O2正极材料的I(003)/I(104)比值以及晶胞体积均有变小; 傅里叶红外光谱分析表明: 在洗涤和热处理之后, LiNi0.8Co0.15Al0.05O2正极材料中形成了碳酸锂、镍化合物杂质及其相关变化。同时对洗涤和热处理前后LiNi0.8Co0.15Al0.05O2正极材料容量和倍率性能进行测试。容量测试结果表明: 原始样品以及处理后样品在30圈循环之后容量保持率分别为88.87%、 87.21%、85.43%和87.80%。  相似文献   

7.
为改善LiNi0.5Co0.2Mn0.3O2(NCM)锂离子电池三元正极材料的电化学性能,采用液相蒸发法将WO3包覆于NCM表面,得到NCM@WO3复合正极材料。通过XRD、SEM和TEM对NCM@WO3复合材料的结构和形貌进行表征,利用充放电测试、循环伏安及交流阻抗测试对其电化学性能进行表征。结果表明,当WO3包覆量为3wt%时,NCM@WO3复合材料性能最佳,在0.5 C下的首次放电比容量为179.9 mA·hg-1,不可逆容量损失降低至42.4 mA·hg-1,循环50圈后容量保持率为98.3%。WO3的包覆提高了锂离子扩散速率,减少了电极材料与电解液的副反应,NCM@WO3复合材料的电化学性能得到提升。   相似文献   

8.
用溶胶凝胶法制备了Li1.2Mn0.54Ni0.13Co0.13O2富锂锰基正极材料,用均匀沉淀法对其进行不同比例Al2O3的表面包覆改性,并对其进行XRD、TEM表征和电化学性能分析。结果表明,包覆后的材料保持了原来的层状结构,Al2O3均匀地包覆在材料颗粒表面形成纳米级包覆层。在0.1C、2.0~4.8 V条件下Al2O3包覆量(质量分数)为0.7%的正极材料首次放电容量为251.3 mAh/g,首次库仑效率达到76.1%,100次循环后容量保持率达92.9%。包覆Al2O3抑制了循环过程中的电压衰减,适量的Al2O3包覆使正极材料的电化学性能提高。  相似文献   

9.
用硅烷偶联剂加热分解的简便方法对锂离子电池正极材料LiNi0.8Co0.15Al0.05O2(NCA)的表面进行处理, 利用XRD结合Rietveld精修、SEM、TEM、DSC、EIS和恒流充放电等方法对材料进行表征。结果显示, 硅烷偶联剂经450℃加热分解后得到的非晶态SiO2均匀包覆在材料表面, 包覆不改变 NCA的晶体结构, 但明显改善了材料性能。在60℃环境中, 0.2C、1C下包覆材料(简写为a-NCA)的放电比容量分别为176.4、158.9 mAh·g-1, 高于NCA的174.2、153.8 mAh·g-1; 50周循环后a-NCA的容量保持率为91.4 %, 远高于NCA的86.5 %; 同时, 经包覆后材料的热稳定性大幅度提高。其原因是包覆层抑制了NCA在循环过程中与电解液发生副反应, 有效降低了离子迁移的界面膜电阻, 并抑制了晶体结构变化。  相似文献   

10.
LiNi0.5Co0.2Mn0.3O2正极材料因能量密度高、循环稳定性好及安全性高而被认为是最有前途的高能量密度锂离子电池正极材料之一。然而,传统的常规碳酸酯基电解液的耐氧化性较差,导致LiNi0.5Co0.2Mn0.3O2正极材料在高电压条件下的容量快速衰减。在氟代碳酸乙烯酯(FEC)的基础上,研究了氟代线性碳酸酯(如二(2,2,2-三氟乙基)碳酸酯(TFEC)及甲基(2,2,2-三氟乙基)碳酸酯(MTFEC))替代碳酸二乙酯(DEC)在高电压下的循环稳定性。电化学测试结果表明,TFEC、MTFEC替代DEC后,4.5 V LiNi0.5Co0.2Mn0.3O2/人造石墨软包电池45℃循环700圈后容量保持率分别从45.5%提高到72.5%、81.6%。线性扫描伏安法(LSV)、扫描电镜(SEM)、透射电镜(TEM)、X射线...  相似文献   

11.
目前,新型正极材料的研究主要集中于提高材料的能量密度和安全性等。其中,单晶型镍钴锰三元材料具有耐高压、高热力学稳定性和高循环稳定性等优异的综合性能,是极具发展前景的正极材料之一。采用LiOH作为熔盐、添加LiNO3助熔剂降低熔点,烧结制备单晶LiNi0.75Co0.10Mn0.15O2材料。结果表明,当烧结温度为860℃、前驱体与混合锂盐的物质的量比为1∶2时,所合成的单晶正极材料的Li+/Ni2+混排率较低,晶体颗粒粒径为1.5~2.5μm。该材料具有良好的循环稳定性,首圈放电容量为172.3 mAh/g,在常温、2.8~4.4 V内,以1C倍率循环100次后,其容量保持率可达86.3%。  相似文献   

12.
本文采用溶胶-凝胶法制备了钴和钛共掺杂的层状LiNi0.82Co0.15Ti0.03O2正极材料,研究了离子掺杂对LiNiO2材料电化学性能的影响。XRD和XPS分析显示,钴和钛共掺杂可以抑制Li+和Ni2+离子在Li层的混排现象。电化学测试结果表明,钴单元素掺杂可以显著提高LiNiO2材料的倍率性能,而钛单掺杂则提高了材料的循环稳定性。进一步地,通过钴钛共掺杂的协同作用,可以使LiNiO2材料的倍率性能和循环稳定性同时得到极大的提高。在200 mA/g的电流密度下循环200次,LiNi0.82Co0.15Ti0.03O2材料的容量保持率高达94.4%,而未掺杂的LiNiO2材料容量保持率仅为57.1%;且在1000 mA/g的电流密度下,放电比容量仍能维持在100 mAh/g左右。  相似文献   

13.
高镍三元正极材料LiNi0.8 Co0.1 Mn0.1 O2(简称NCM811)是非常有前景的动力电池用锂离子电池正极材料.LiNi0.8 Co0.1 M n0.1 O2具有比容量高、成本低、环保等优点,但也存在锂镍混排严重,容量衰减快等缺点.为解决这些问题,促进该材料在动力电池中的应用进程,本研究采用高温固相法合成了NCM811,并通过Na+掺杂对材料进行改性.采用X射线衍射仪(XRD)、扫描电镜(SEM)对材料进行形貌和结构表征.采用循环伏安(CV)、循环、倍率以及电化学阻抗(EIS)等手段研究材料的电化学性能.研究结果表明:在2.7~4.3 V,0.5 C放电条件下,当Na+掺杂量为0.1摩尔分数时,显示了185 m A h/g的初始放电比容量,循环100次后,仍保持151 m A h/g,显示出较好的循环性能.在0.2 C,0.5C,1C,2C,5C和10C下材料的放电比容量分别为195,184,158,137,112和90mAh/g,展现出较好的倍率性能.因此,适量的Na+掺杂能有效提高NCM 811材料的电化学性能.  相似文献   

14.
通过热力学计算获得了Li-Ni-Co-Mn-H2O系中各物质的热力学数据, 从而绘制了25℃和200℃、离子活度为1.00下的Li-Ni-Co-Mn-H2O系电位-pH图。热力学分析结果表明: 温度为25℃时, 在pH 3~13范围内, 水溶液中未出现LiNixCoyMn1-x-yO2稳定区域; 随着温度升高, Li-Ni-Co-Mn-H2O系中各物质的稳定区域向低pH和低电位方向移动。在温度为200℃, pH为9.7~13.0的水溶液中出现了LiNixCoyMn1-x-yO2稳定区域。这说明在一定温度下, 水溶液中合成LiNixCoyMn1-x-yO2是可能的, 且提高温度有利于合成反应进行。进一步通过实验验证, 以(Ni0.5Co0.2Mn0.3) (OH)2前驱体和LiOH·H2O为原料, 在水溶液中成功获得具有α-NaFeO2层状结构的锂镍钴锰四元前驱体, 经过热处理后得到循环稳定性良好的LiNi0.5Co0.2Mn0.3O2正极材料。实验结果证明, 所绘制Li-Ni-Co-Mn-H2O系E-pH图是可靠的, 且湿法合成LiNi0.5Co0.2Mn0.3O2正极材料具有良好的循环性能。  相似文献   

15.
由于钴价格的不稳定,无钴高镍LiNi0.9Mn0.1O2被认为是未来有潜力的正极材料,但是倍率性能弱和循环寿命短的问题阻碍了其商业化。通过Mo元素对无钴高镍LiNi0.9Mn0.1O2正极材料进行掺杂改性,延缓材料在充电阶段的有害相变,进而提升材料的倍率性能和循环稳定性。在1C倍率下,循环500圈后有着73.3%的容量保持率;即使在10C的高倍率下,依然有着152.05mAh/g的高放电容量。本研究为用于电动汽车的锂离子正极材料提供了新的选择。  相似文献   

16.
以氨水为络合剂,NaOH为沉淀剂,通过共沉淀制备了高致密、粒度均匀的球形前驱体Ni0.8Co0.1Mn0.1(OH)2.通过焙烧该前驱体和LiOH.H2O的混合物制备出球形锂离子电池正极材料LiNi0.8Co0.1Mn0.1O2.采用XRD、SEM、TEM、TGA/DSC以及恒流充放电测试对材料的结构、形貌和电化学性能进行表征.结果表明,球形前驱体是由纳米级一次颗粒团聚形成,而不是晶粒的长大,且反应时间对前驱体的形貌、粒径分布及振实密度有显著影响.750℃焙烧16 h后的正极材料,保持了完好的球形形貌,具有最佳的层状结构和电化学性能,振实密度最大(2.98 g/cm3),首次放电容量为202.4 mAh/g,倍率性能佳,在3C的放电电流下容量为174.1 mAh/g,且循环性能优良,在40次循环以后,放电容量保持率为92.3%.  相似文献   

17.
钟伟攀  陆雷  杨晖 《功能材料》2012,43(11):1425-1430
采用共沉淀-高温固相烧结法,控制合成条件,以不同的沉淀剂(Na2CO3、NaOH)制备出正极材料。通过XRD、SEM及电池测试系统对不同沉淀剂制备的正极材料进行结构、形貌和电化学性能的表征,对比两者存在的优缺点。研究结果表明,以NaOH为沉淀剂制备的正极材料有更好的层状结构,形貌也更好,充放电性能和倍率性能也较好。其首次放电比容量达到了187.9mAh/g,最高可达196.2mAh/g,50次充放电循环后,容量保持率为81.6%;以Na2CO3为沉淀剂制备的正极材料的放电比容量较低,但容量保持率较高,为85.3%。  相似文献   

18.
采用碳酸盐共沉淀结合高温固相焙烧法制备了富锂正极材料Li1.2Mn0.54Ni0.13Co0.13O2, 并用不同量的FePO4对其进行表面包覆改性。SEM分析结果显示, FePO4可以均匀地包覆在富锂材料的颗粒表面, XRD显示包覆后的材料很好地保持了原有的层状结构, 且FePO4呈非晶态。电化学测试表明改变FePO4包覆量可以调节该材料特定的电性能指标: FePO4包覆量为2wt% 的材料具有最大的首次充放电容量, 在0.05C下分别为325.9和258.4 mAh/g; FePO4包覆量为4wt%的材料兼具较高的放电容量和循环稳定性; 材料的首次充放电效率随着FePO4含量的增加而逐渐升高, FePO4包覆量为20wt%时, 首次充放电效率达到97.4%。  相似文献   

19.
采用草酸盐共沉淀法合成前驱体,然后经过氧化气氛高温焙烧制备了锂离子电池正极材料LiNi0.8Co0.1Mn0.1O2.用X射线衍射(XRD)、扫描电镜(SEM)和恒电流充放电技术研究了pH值、焙烧温度、焙烧时间和锂用量对材料结构、微观形貌及电化学性能的影响.草酸盐共沉淀-氧化焙烧合成LiNi0.8 Co0.1Mn0.1O2的工艺条件为:pH值为5.5,焙烧温度为800℃,焙烧时间为12h,Li/M摩尔比为1.05.所制备的LiNi0.8 Co0.1 Mn0.1 O2在0.5C倍率下的首次充放电比容量达到174.5mAh·g-1,循环20周容量保持率为88.5%.  相似文献   

20.
锂离子电池日前的爆发式增长使之将在未来的3~5年内面临大量的“退役”问题。退役锂离子电池尤其是退役正极材料的高效、可持续的回收利用,是实现新能源产业碳达峰和碳中和目标的关键。主要研究了玉米秸秆对退役正极材料LiNi1/3Co1/3Mn1/3O2(NCM333)中有价金属的热化学还原过程,通过调控转化高价金属,选择性回收金属盐及单质,避免传统回收过程中化学试剂的添加,同时利用退役正极材料中的过渡金属特性,对玉米秸秆进行催化重整产气。使用X射线衍射仪、X射线光电子能谱等仪器分析热解后的正极材料和玉米秸秆,结果表明,玉米秸秆热解、气化产生的还原性气体和生物碳破坏了正极材料LiNi1/3Co1/3Mn1/3O2中的高价金属—氧键,降低Ni, Co和Mn的金属价态,同时将Li转化为Li2CO3。不同的热解温度得到了不同的热解产物,较高的温度更易得到Ni-Co合金及MnO。热解还原...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号