首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Muscimol injection in the caudal part of the fastigial nucleus (cFN) leads, in the head-unrestrained cat, to a characteristic dysmetria of saccadic gaze shifts toward visual targets. The goal of the current study was to test whether this pharmacological cFN inactivation impaired the ability to compensate for unexpected perturbations in gaze position during the latency period of the saccadic response. Such perturbations consisted of moving gaze away from the target by a transient electrical microstimulation in the deep layers of the superior colliculus simultaneously with extinction of the visual target. After injection of muscimol in the cFN, targets located in the contralesional hemifield elicited gaze shifts that fell short of the target in both "perturbed" and "unperturbed" trials. The amplitude of the compensatory contraversive gaze shifts in perturbed trials coincided with the predicted amplitude of unperturbed responses starting from the same position. Targets located in the opposite hemifield elicited hypermetric gaze shifts in both trial types, and the error of compensatory responses was not statistically different from that of unperturbed gaze shifts. These results indicate that inactivation of the cFN does not interfere with the ability of the head-unrestrained cat to compensate for ipsiversive or contraversive perturbations in gaze position. Thus the gaze-related feedback signals that are used to compute a reference signal of desired gaze displacement are not impaired by cFN inactivation.  相似文献   

2.
The implication of the caudal part of the fastigial nucleus (cFN) in the control of saccadic shifts of the visual axis is now well established. In contrast a possible involvement of the rostral part of the fastigial nuceus (rFN) remains unknown. In the current study we investigated in the head-unrestrained cat the contribution of the rFN to the control of visually triggered saccadic gaze shifts by measuring the deficits after unilateral muscimol injection in the rFN. A typical gaze dysmetria was observed: gaze saccades directed toward the inactivated side were hypermetric, whereas those with an opposite direction were hypometric. For both movement directions, gaze dysmetria was proportional to target retinal eccentricity and could be described as a modified gain in the translation of visual signals into eye and head motor commands. Correction saccades were triggered when the target remained visible and reduced the gaze fixation error to 2.7 +/- 1.3 degrees (mean +/- SD) on average. The hypermetria of ipsiversive gaze shifts resulted predominantly from a hypermetric response of the eyes, whereas the hypometria of contraversive gaze shifts resulted from hypometric responses of both eye and head. However, even in this latter case, the eye saccade was more affected than the motion of the head. As a consequence, for both directions of gaze shift the relative contributions of the eye and head to the overall gaze displacement were altered by muscimol injection. This was revealed by a decreased contribution of the head for ipsiversive gaze shifts and an increased head contribution for contraversive movements. These modifications were associated with slight changes in the delay between eye and head movement onsets. Inactivation of the rFN also affected the initiation of eye and head movements. Indeed, the latency of ipsiversive gaze and head movements decreased to 88 and 92% of normal, respectively, whereas the latency of contraversive ones increased to 149 and 145%. The deficits induced by rFN inactivation were then compared with those obtained after muscimol injection in the cFN of the same animals. Several deficits differed according to the site of injection within the fastigial nucleus (tonic orbital eye rotation, hypermetria of ipsiversive gaze shifts and fixation offset, relationship between dysmetria and latency of contraversive gaze shifts, postural deficit). In conclusion, the present study demonstrates that the rFN is involved in the initiation and the control of combined eye-head gaze shifts. In addition our findings support a functional distinction between the rFN and cFN for the control of orienting gaze shifts. This distinction is discussed with respect to the segregated fastigiofugal projections arising from the rFN and cFN.  相似文献   

3.
In 2 experiments, the authors tested predictions from cognitive models of social anxiety regarding attentional biases for social and nonsocial cues by monitoring eye movements to pictures of faces and objects in high social anxiety (HSA) and low social anxiety (LSA) individuals. Under no-stress conditions (Experiment 1), HSA individuals initially directed their gaze toward neutral faces, relative to objects, more often than did LSA participants. However, under social-evaluative stress (Experiment 2), HSA individuals showed reduced biases in initial orienting and maintenance of gaze on faces (cf. objects) compared with the LSA group. HSA individuals were also relatively quicker to look at emotional faces than neutral faces but looked at emotional faces for less time, compared with LSA individuals, consistent with a vigilant-avoidant pattern of bias. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

4.
The fastigial nucleus (FN) receives vestibular information predominantly from Purkinje cells of the vermis. FN in the monkey can be divided in a rostral part, related to spinal mechanisms, and a caudal part with oculomotor functions. To understand the role of FN during movements in space, single-unit activity in alert monkeys was recorded during passive three-dimensional head movements from rostral FN. Seated monkeys were rotated sinusoidally around a horizontal earth-fixed axis (vertical stimulation) at different orientations 15 degrees apart (including roll, pitch, vertical canal plane and intermediate planes). In addition, sinusoidal rotations around an earth-vertical axis (yaw stimulus) included different roll and pitch positions (+/-10 degrees, +/-20 degrees). The latter positions were also used for static stimulation. One hundred fifty-eight neurons in two monkeys were modulated during the sinusoidal vertical search stimulation. The vast majority showed a uniform response pattern: a maximum at a specific head orientation (response vector orientation) and a null response 90 degrees apart. Detailed analysis was obtained from 111 neurons. On the basis of their phase relation during dynamic stimulation and their response to static tilt, these neurons were classified as vertical semicircular canal related (n = 79, 71.2%) or otolith related (n = 25; 22.5%). Only seven neurons did not follow the usual response pattern and were classified as complex neurons. For the vertical canal-related neurons (n = 79) all eight major response vector orientations (ipsilateral or contralateral anterior canal, posterior canal, roll, and nose-down and nose-up pitch) were found in Fn on one side. Neurons with ipsilateral orientations were more numerous and on average more sensitive than those with contralateral orientations. Twenty-eight percent of the vertical canal-related neurons also responded to horizontal canal stimulation. None of the vertical canal-related neurons responded to static tilt. Otolith-related neurons (n = 25) had a phase relation close to head position and were considerably less numerous than canal-related neurons. Except for pitch, all other response vector orientations were found. Seventy percent of these neurons responding during dynamic stimulation also responded during static tilt. The sensitivity during dynamic stimulation was always higher than during static stimulation. Sixty-one percent of the otolith-related neurons responded also to horizontal canal stimulation. These results show that in FN, robust vestibular signals are abundant. Canal-related responses are much more common than otolith-related responses. Although for many canal neurons the responses can be related to single canal planes, convergence between vertical canals but also with horizontal canals is common.  相似文献   

5.
The mesencephalic interstitial nucleus of Cajal (iC) is considered the neural integrator for vertical and torsional eye movements and has also been proposed to be involved in saccade generation. The aim of this study was to elucidate the function of iC in neural integration of different types of eye movements and to distinguish eye movement deficits due to iC impairment from that of the immediately adjacent rostral interstitial nucleus of the medial longitudinal fasciculus (riMLF). We addressed the following questions: (1) According to the neural integrator hypothesis, all eye movements including the saccadic system and the vestibulo-ocular reflex (VOR) share a common neural integrator. Do iC lesions impair gaze-holding function for vertical and torsional eye positions and the torsional and vertical VOR gain to a similar degree? (2) What are the dynamic properties of vertical and torsional eye movements deficits after iC lesions, e.g., the specificity of torsional and vertical nystagmus? (3) Is iC involved in saccade generation? We performed 13 uni- and three bilateral iC inactivations by muscimol microinjections in four alert monkeys. Three-dimensional eye movements were studied under head-stationary conditions during vertical and torsional VOR. Under static conditions, unilateral iC injections evoked a shift of Listing's plane to the contralesional side (up to 20 degrees), which increased (ipsilesional ear down) or decreased (ipsilesional ear up) by additional static vestibular stimulation in the roll plane, i.e., ocular counterroll was preserved. The monkeys showed a spontaneous torsional nystagmus with a profound downbeat component. The fast phases of torsional nystagmus always beat toward the lesion side (ipsilesional). Pronounced gaze-holding deficit for torsional and vertical eye positions (neural integrator failure) was reflected by the reduction of time constants of the exponential decay of the slow phase to 330-370 ms. Whereas the vertical oculomotor range was profoundly decreased (up to 50%) and vertical saccades were reduced in amplitude, saccade velocity remained normal and horizontal eye movements were not affected. Bilateral iC injections reduced the shift of Listing's plane caused by unilateral injections, i.e., back toward the plane of zero torsion. Torsional nystagmus reversed its direction and ceased, whereas vertical nystagmus persisted. In contrast to unilateral injection, there was additional upbeating nystagmus. Time constants of the position integrator of the gaze-holding system did not differ between unilateral and bilateral injections. The range of stable vertical eye positions and saccade amplitude was smaller when compared with unilateral injections, but the main sequence remained normal. Dynamic vestibular stimulation after unilateral iC injections had virtually no effect on torsional and vertical VOR gain and phase at the same time when time constants already indicated severe integrator failure. Torsional VOR elicited a constant slow-phase velocity offset up to 30 degrees toward the contralesional side, i.e., in the opposite direction to spontaneous torsional nystagmus. Likewise, vertical VOR showed a velocity offset in an upward direction, i.e., opposite to the spontaneous downbeat nystagmus. Contralesional torsional and upward vertical quick phases were missing or severely reduced in amplitude but showed normal velocity. In contrast, bilateral iC injections reduced the gain of the torsional and vertical VOR by 50% and caused a phase lead of 10-20 degrees (eye compared with head velocity). We propose that the slow-phase velocity offset during torsional and vertical VOR reflects a vestibular imbalance. It therefore appears likely that the vertical and torsional nystagmus after iC lesions is not only caused by a neural integrator failure but also by a vestibular imbalance. Unilateral iC injections have clearly differential effects on the VOR and the gaze-holding function. (ABSTRACT TRUNCATED)  相似文献   

6.
Hypothesized that attention facilitates the neural mechanisms that permit responding to significant input. In the present experiment, the orienting response was used as an index of the action of the neural mechanisms of attention in 7 cats. Results demonstrate that Ss could not use thalamic stimulation as a signal to perform a behavioral response when stimulus intensities were too weak to evoke orienting behavior. Responses were quickly learned at higher intensities of stimulation, and with continued training, the Ss were able to respond to the weaker, previously ineffective stimulus. This increase in sensitivity was not due to changes in tonic arousal and appeared to be relatively specific to the stimulated nucleus. The procedures may be useful in exploring the neural mechanisms of perceptual learning. Findings are consistent with B. Libet's (1982) report that EPs in sensory cortex may not be sufficient to produce conscious experience in humans and suggest that input to the cerebral cortex from sense organs is not a sufficient condition even for discrimination. (14 ref) (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

7.
8.
Responses of cerebellar respiratory-related neurons (CRRNs) within the rostral fastigial nucleus and the phrenic neurogram to activation of respiratory mechano- and chemoreceptors were recorded in anesthetized, paralyzed, and ventilated cats. Respiratory challenges included the following: 1 ) cessation of the ventilator for a single breath at the end of inspiration (lung inflation) or at functional residual capacity, 2) cessation of the ventilator for multiple breaths, and 3) exposure to hypercapnia. Nineteen CRRNs having spontaneous activity during control conditions were characterized as either independent (basic, n = 14) or dependent (pump, n = 5) on the ventilator movement. Thirteen recruited CRRNs showed no respiratory-related activity until breathing was stressed. Burst durations of expiratory CRRNs were prolonged by sustained lung inflation but were inhibited when the volume was sustained at functional residual capacity; it was vice versa for inspiratory CRRNs. Multiple-breath cessation of the ventilator and hypercapnia significantly increased the firing rate and/or burst duration concomitant with changes noted in the phrenic neurogram. We conclude that CRRNs respond to respiratory inputs from CO2 chemo- and pulmonary mechanoreceptors in the absence of skeletal muscle contraction.  相似文献   

9.
OBJECTIVE: To describe lower-extremity functioning in community-dwelling older Mexican Americans and to examine its relationship with medical problems. DESIGN: Cross-sectional analyses of survey and performance-based data obtained in a population-based study employing area probability sampling. SETTING: Households within selected census tracts of five Southwestern states: Arizona, California, Colorado, New Mexico, and Texas. PARTICIPANTS: A total of 2873 Mexican Americans aged 65 years and older. MEASUREMENTS: A multidimensional questionnaire assessing demographic, sociocultural, and health variables. Standardized tests of lower-extremity physical functioning included measures of standing balance, repeated chair stands, walking, and an overall summary measure. RESULTS: Regression analyses revealed that being more than age 75 and female, having arthritis diabetes, visual impairments, or being obese or underweight were all significantly associated with performance on both individual and summary tests of lower-extremity functioning. In separate regression analyses, the total number of medical conditions was also associated with performance. CONCLUSIONS: The likelihood of predicting performance or inability to complete tests of lower-extremity functioning was greatest for those aged 80 and older, those with arthritis or diabetes, and those with three or more medical conditions. Because of the high prevalence of diabetes in Mexican Americans, documentation of the association of diabetes with performance-based tests of lower-extremity functioning may help guide early interventions targeted to prevent progression to more severe limitations or disability.  相似文献   

10.
The medulla oblongata caudal to the obex was explored for neurons responsive to tooth pulp (TP) stimulation in cats. Four different subclasses of TP neurons were found. The latter included TP specific (TPS) neurons, trigeminal wide dynamic range (trigeminal WDR) neurons with TP input, trigeminal subnucleus reticularis ventralis (trigeminal SRV) neurons with TP input and convergent reticular formation (convergent RF) neurons with TP input. TPS neurons were located in the dorsal marginal rim of the trigeminal subnucleus caudalis, i.e., in the marginal layer or the outer zone of substantia gelatinosa. WDR neurons with TP input were found in the neck region of medullary dorsal horn which corresponds to the lateral part of subnucleus reticularis dorsalis (SRD). Trigeminal SRV neurons with TP input were located in the lateral part of SRV. Convergent RF neurons with TP input were found in the middle third of the caudal bulbar RF consisting of SRD and SRV. Both TPS neurons and WDR neurons with TP input included trigeminothalamic neurons as evidenced by the antidromic activation from the nucleus ventralis posteromedialis of the contralateral thalamus. A significant proportion of both trigeminal SRV and convergent RF neurons with TP input were antidromically activated by stimulation of the nucleus centralis lateralis of the contralateral thalamus. The former two subclasses may subserve the sensory-discriminative aspect of toothache, while the latter two subclasses, the emotional-motivational aspect.  相似文献   

11.
During classical conditioning, many neurons in the trigeminal complex of rabbits exhibit activity that is related to the conditioned stimulus (tone), the unconditioned stimulus (airpuff), or to the conditioned response (eyeblink). For these reasons the trigeminal complex has been hypothesized to be a brainstem locus for the neuronal plasticity associated with conditioning. In this experiment, the learning-related activity (unit activity associated with the conditioned response) in the trigeminal is abolished when either the red nucleus or interpositus nucleus of the cerebellum is temporarily inactivated by cooling, but the stimulus-evoked activity is unaffected by cooling. This study and previous results support the suggestion that the learning-related activity seen in the trigeminal is driven by the interpositus by way of the red nucleus. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

12.
1. We electrically stimulated the intermediate and deep layers of the superior colliculus (SC) in two rhesus macaques free to move their heads both vertically and horizontally (head unrestrained). Stimulation of the primate SC can elicit high-velocity, combined, eye-head gaze shifts that are similar to visually guided gaze shifts of comparable amplitude and direction. The amplitude of gaze shifts produced by collicular stimulation depends on the site of stimulation and on the parameters of stimulation (frequency, current, and duration of the stimulation train). 2. The maximal amplitude gaze shifts, produced by electrical stimulation at 56 sites in the SC of two rhesus monkeys, ranged in amplitude from approximately 7 to approximately 80 deg. Because the head was unrestrained, stimulation-induced gaze shifts often included movements of the head. Head movements produced at the 56 stimulation sites ranged in amplitude from 0 to approximately 70 deg. 3. The relationships between peak velocity and amplitude and between duration and amplitude of stimulation-induced head movements and gaze shifts were comparable with the relationships observed during visually guided gaze shifts. The relative contributions of the eyes and head to visually guided and stimulation-induced gaze shifts were also similar. 4. As was true for visually guided gaze shifts, the head contribution to stimulation-induced gaze shifts depended on the position of the eyes relative to the head at the onset of stimulation. When the eyes were deviated in the direction of the ensuing gaze shift, the head contribution increased and the latency to head movement onset was decreased. 5. We systematically altered the duration of stimulation trains (10-400 ms) while stimulation frequency and current remained constant. Increases in stimulation duration systematically increased the amplitude of the evoked gaze shift until a site specific maximal amplitude was reached. Further increases in stimulation duration did not increase gaze amplitude. There was a high correlation between the end of the stimulation train and the end of the evoked gaze shift for movements smaller than the site-specific maximal amplitude. 6. Unlike the effects of stimulation duration on gaze amplitude, the amplitude and duration of evoked head movements did not saturate for the range of durations tested (10-400 ms), but continued to increase linearly with increases in stimulation duration. 7. The frequency of stimulation was systematically varied (range: 63-1,000 Hz) while other stimulation parameters remained constant. The velocity of evoked gaze shifts was related to the frequency of stimulation; higher stimulation frequencies resulted in higher peak velocities. The maximal, site-specific amplitude was independent of stimulation frequency. 8. When stimulating a single collicular site using identical stimulation parameters, the amplitude and direction of stimulation-induced gaze shifts, initiated from different initial positions, were relatively constant. In contrast, the amplitude and direction of the eye component of these fixed vector gaze shifts depended upon the initial position of the eyes in the orbits; the endpoints of the eye movements converged on an orbital region, or "goal," that depended on the site of collicular stimulation. 9. When identical stimulation parameters were used and when the eyes were centered initially in the orbits, the gaze shifts produced by caudal collicular stimulation when the head was restrained were typically smaller than those evoked from the same site when the head was unrestrained. This attenuation occurred because stimulation drove the eyes to approximately the same orbital position when the head was restrained or unrestrained. Thus movements produced when the head was restrained were reduced in amplitude by approximately the amount that the head would have contributed if free to move. 10. When the head was restrained, only the eye component of the intended gaze shift  相似文献   

13.
The potential role of active state maintenance as a determinant of myocardial oxygen consumption (MVO2) has not been defined. Right ventricular papillary muscles from 15 cats were studied in a polarographic myograph at 23 degrees C in a Krebs-Ringer solution containing 7.5 mM Ca2+ and 10 mM caffeine. MVO2 was determined for isometric tetani at Lmax of 1-5 seconds' duration. Increases in tetanus duration related linearly to increments in both active tension time (delta active tension) and MVO2. In order to examine the oxygen cost of active state maintenance not attributable to associated tension generation, both the same isometric and 2.5- to 10.0-second lightly preloaded isotonic tetani were produced in nine muscles. For each tetanus duration the contribution throughout the contraction of developed force (preload) to MVO2 could be subtracted from overall isotonic MV02. In the absence of the MVO2 associated with force development, the active state duration was related linearly to MVO2, with a mean active state MVO2 of 2.42 +/- 0.29 nl O2/mg dry muscle/sec of isotonic tetanus; this MVO2 is 68% of the value of 3.58 +/- 0.42 nl O2/mg dry muscle/sec that was obtained for isometric tetanus at Lmax. This study identifies active state maintenance as the major determinant of MVO2 during myocardial tetanus and, furthermore, suggests the possibility that alterations in ative state intensity and duration may be the biochemical mechanism by which other determinants of MVO2 act in a more physiological setting.  相似文献   

14.
Injections of muscimol into the median raphe nucleus (MR) elicit intense drinking in normally hydrated rats. To determine whether this response is dependent on forebrain systems mediating other aspects of water intake, the authors examined the effects of lesions of the subfornical organ (SFO), median preoptic nucleus (MnPO), lateral preoptic area (LPO), or lateral hypothalamus (LH) on the drinking. Lesions of the SFO or LH attenuated muscimol-elicited drinking, whereas lesions of the MnPO or LPO increased water intake after the treatment. All of the lesion groups showed a deficit in drinking to injections of polyethylene glycol and at least one of the doses of hypertonic saline. Only the SFO- and LH-lesioned groups showed a suppression of drinking to systemic injections of angiotensin II, suggesting that the drinking elicited by intra-MR injections of muscimol may involve changes in the central circuits mediating angiotensin-induced drinking. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

15.
We propose that the descending command from area 4 that is responsible, in part, for the change in limb trajectory required to step over an obstacle in one's path also plays a role in triggering the anticipatory postural modifications that accompany this movement. To test this hypothesis, we recorded the discharge characteristics of identified classes of corticofugal neurons in area 4 of the cat. Neurons were identified either as: pryamidal tract neurons (PTNs) if their axon projected to the caudal pyramidal tract (PT) but not to the pontomedullary reticular formation (PMRF); as corticoreticular neurons (CRNs) if their axon projected to the PMRF but not to the PT; and as PTN/CRNs if their axon projected to both structures. Altogether, the discharge properties of 212 corticofugal neurons (109 PTNs, 66 PTN/CRNs, and 37 CRNs) within area 4 were recorded during voluntary gait modifications. Neurons in all three classes showed increases in their discharge frequency during locomotion and included groups that increased their discharge either during the swing phase of the modified step, during the subsequent stance phase, or in the stance phase of the cycle preceding the step over the obstacle. A slightly higher percentage of CRNs (39%) discharged in the stance phase prior to the gait modification than did the PTNs or PTN/CRNs (20% and 17% respectively). In 37 electrode penetrations, we were able to record clusters of 3 or more neurons within 500 micro(m) of each other. In most cases, PTN/CRNs recorded in close proximity to PTNs had similar receptive fields and discharged in a similar, but not identical, manner during the gait modifications. Compared with adjacent PTNs, CRNs normally showed a more variable pattern of activity and frequently discharged earlier in the step cycle than did the PTNs or PTN/CRNs. We interpret the results as providing support for the original hypothesis. We suggest that the collateral branches to the PMRF from corticofugal neurons with axons that continue at least as far as the caudal PT provide a signal that could be used to trigger dynamic postural responses that are appropriately organized and scaled for the movements that are being undertaken. We suggest that the more variable and earlier discharge activity observed in CRNs might be used to modify the postural support on which the movements and the dynamic postural adjustments are superimposed.  相似文献   

16.
17.
Chemical stimulation of the inferior colliculus (IC) with semicarbazide--an inhibitor of the gamma aminobutyric acid synthesizing enzyme--functions as an unconditioned stimulus in the conditioned place aversion test (CPA), and electrolytic lesions of the basolateral amygdala (BLA) enhance the aversiveness of the IC stimulation. This study examined the effects of inactivation of the BLA with muscimol on the conditioned and unconditioned fear using semicarbazide injections into the IC of rats subjected to conditioned (CPA) or unconditioned (open field) fear tests. In both tests, the rats were injected with semicarbazide or saline into the IC and muscimol or saline into the BLA. Muscimol decreased the CPA and increased the unconditioned fear elicited by IC injections of semicarbazide. These findings indicate that distinct modulatory mechanisms in the BLA are recruited during the conditioned and unconditioned fear triggered by IC activation. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

18.
This study attempts clarify the mechanism of neurological deficits in tethered cord syndrome using evoked spinal cord potentials (ESCPs). ESCPs in response to both sciatic nerve (SN-ESCP) and spinal cord stimulation (SC-DESCP) were recorded from the dorsal epidural space. With a fixed degree of caudal traction on the spinal cord in ten cats for 2-4 hours, ESCPs were increased in amplitude in the N1 and N2 deflections of the SC-DESCPs to 158% and 154% at L5 and decreased to 91% and 76% after transient augmentation at L3. On the other hand, the amplitude in the N1 deflection of the SN-ESCPs at L3 and L5 was decreased to 40% and 68%. These findings suggest that not only the force but also the duration of traction influence the degree of the spinal cord dysfunction. When the spinal cords of 17 cats received compression with traction and without traction, the SN-ESCPs of the former became positive earlier than that of the latter. The extent of the recovery in amplitude of both SC-DESCPs and SN-ESCPs propagated over compression site was far limited in the former than in the latter. These results would indicate that the spinal cord subjected to traction is vulnerable to compression.  相似文献   

19.
Studied the role of extrastriate cortical areas in selective attention in 12 rhesus monkeys. Ss learned a series of color–form pattern discrimination problems, with either color or form cues relevant. After each problem was mastered, correct behavior required a shift in attention (i.e., that responses be made to the previously irrelevant dimension). On some problems shifting attention required that the S maintain the same fixation; on other problems the color and form cues were separated in space, and the attention shift presumably required a shift in gaze. Matched groups of Ss with inferotemporal, prestriate, or superior temporal sulcus lesions, and normal controls, differed significantly in their ability to shift attention. Analyses of inferred stages in attention shift showed that different processes were disturbed in the 3 lesion groups. Results are discussed in terms of cortical substrates for "looking" and "seeing." (21 ref) (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

20.
Of 9 young adult cats with electrodes implanted in the dorsolateral caudate nucleus, 4 had previously reached criterion on a delayed alternation task. Tested under alternating conditions of stimulation and nonstimulation, these 4 Ss showed a significant performance decline with stimulation. When a marker was placed on 1 response panel, performance under stimulation did not decline. Stimulation did not affect the learning of a visual discrimination. The remaining 5 Ss were trained on delayed alternation with alternating stimulation and nonstimulation conditions. Under stimulation, performance remained near chance levels. These Ss were tested on position learning and reversal, and under unilateral stimulation. Results support the view that the caudate nucleus and prefrontal cortex mediate separate aspects of delayed response behavior. (35 ref) (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号