首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
介绍了静电探针在22cm双潘宁离子源中心等离子体参数测量中的应用.测出了探针的伏安特性曲线,由该曲线求出在弧流为200 A时,电子温度约为6.0 eV,密度约为2×1012 cm-3,这对于调整放电控制条件,获得高效率大功率的离子源有重要的参考价值,并且对于今后实现强而且均匀的中性束束流的引出也有着重要意义.  相似文献   

2.
         下载免费PDF全文
Neutral beam injection (NBI) is recognized as one of the most e®ective means for plasma heating. A 100 s long pulse neutral beam with 30 keV beam energy, 10 A beam current and a 100 s long pulse modulating neutral beam with 50 keV beam energy, 16 A beam current were achieved in the EAST neutral beam injector on the test-stand. The preliminary results suggest that EAST-NBI system initially possess the ability of long pulse beam extraction.  相似文献   

3.
The neutral beam injection (NBI) system is one of the most important auxiliary plasma heating and current driving methods for fusion device. A high power ion beam of 3 MW with 80 keV beam energy in 0.5 s beam duration and a long pulse ion beam of 4 s with 50 keV beam energy ion beam extraction were achieved on the EAST neutral beam injector on the teststand. The preliminary results show that the EAST-NBI system was developed successfully on schedule.  相似文献   

4.
Parametrical effect on plasma discharge and beam extraction in the diagnosis neutral beam (DNB) system for HT-7 tokamak was studied experimentally. Useful results with an improved beam quality were obtained.  相似文献   

5.
A parametric pencil beam model is introduced for describing the attenuation of an energetic neutral beam moving through a tokamak plasma. The nonnegligible effects of a finite beam cross-section and noncircular shifted plasma cross-sections are accounted for in a simple way by using a smoothing algorithm dependent linearly on beam radius and by including information on the plasma flux surface geometry explicitly. The model is bench-marked against more complete and more time-consuming two-dimensional Monte Carlo calculations for the case of a large D-shaped tokamak plasma with minor radiusa=120 cm and elongationb/a=1.6. Deposition profiles are compared for deuterium beam energies of 120–150 keV, central plasma densities of 8×1013 to 2×1014 cm–3, and beam orientation ranging from perpendicular to tangential to the inside wall.  相似文献   

6.
A large-area high-power radio-frequency(RF) driven ion source was developed for positive and negative neutral beam injectors at the Korea Atomic Energy Research Institute(KAERI). The RF ion source consists of a driver region, including a helical antenna and a discharge chamber, and an expansion region. RF power can be transferred at up to 10 kW with a fixed frequency of 2 MHz through an optimized RF matching system. An actively water-cooled Faraday shield is located inside the driver region of the ion source for the stable and steady-state operations of high-power RF discharge. Plasma ignition of the ion source is initiated by the injection of argongas without a starter-filament heating, and the argon-gas is then slowly exchanged by the injection of hydrogen-gas to produce pure hydrogen plasmas. The uniformities of the plasma parameter,such as a plasma density and an electron temperature, are measured at the lowest area of the driver region using two RF-compensated electrostatic probes along the direction of the shortand long-dimensions of the driver region. The plasma parameters will be compared with those obtained at the lowest area of the expansion bucket to analyze the plasma expansion properties from the driver region to the expansion region.  相似文献   

7.
         下载免费PDF全文
As one of the most effective methods for plasma heating,a neutral beam injector(NBI) achieved plasma heating and current driving for the first time in EAST 2014 experimental campaign.According to the research plan of the EAST physics experiment,the first NBI(EASTNBI-1) has been built and become operational in 2014.In this article,the latest experiment results of EAST-NBI-1 are reported as follows:(1) EAST achieves H-mode plasma in the case of NBI heating alone,(2) EAST achieves 22 s long pulse stable H-mode plasma in the case of sinndtaneous NBI and lower hybrid wave(LHW) heating.The measurement data show that the loop voltage decreased and the plasma stored energy increased obviously.The results indicate that EAST-NBI-1 has achieved plasma heating and current driving,and thus lays a foundation for the construction of EAST-NBI-2,which will be built in a few months this year.  相似文献   

8.
         下载免费PDF全文
Vacuum insulation of 1 MV is a common issue for the HV bushing and the accel- erator for the ITER neutral beam injector (NBI). The HV bushing as an insulating feedthrough has a five-stage structure and each stage consists of double-layered insulators. To sustain 1 MV in vacuum, reduction of electric field at several triple points existing around the double-layered insulators is a critical issue. To reduce electric field simultaneously at these points, three types of stress ring have been developed. In a voltage holding test of a full-scale mockup equipped with these stress rings, 120% of rated voltage was sustained and the voltage holding capability required in ITER was verified. In the MeV accelerator, whose target is the acceleration of a H ion beam of 1 MeV, 200 A/m 2 , the gap between the grid support was extended to suppress breakdowns triggered by electric field concentration at the edge and corner of the grid support. This modi- fication improved the voltage holding capability in vacuum, and the MeV accelerator succeeded in sustaining 1 MV stably. Furthermore, it appeared that the H ions beam was deflected and a part of the beam was intercepted at the acceleration grid. This causes high heat load on the grids and breakdowns during beam acceleration. To suppress the direct interception, a new grid was designed with proper aperture displacement based on a three dimensional beam trajectory analysis. As a result, 980 keV, 185 A/m 2 H ion beam acceleration has been demonstrated, which is close to the ITER requirement.  相似文献   

9.
The results on high power injection with the ueutral bean, injection (NBI) system for the Large Helical Device (LHD) are reported. The system consists of three beam-lines with two hydrogen negative ion (H^- ion) sources installed in each beam-line. In order to improve the injection power, a new beam accelerator with a multi-slot grounded grid (MSGG) has been developed and applied to one beam-line. Using the accelerator, a maximum power of 5.7 MW was achieved in 2003 and 2004, and the maximum energy of 189 keV was reached. The power and energy exceeded the design values of the individual beam-line for LHD. The other beam-lines also increased their injection power up to about 4 MW, and the total injection power of 13.1 MW was achieved with three beam-llnes in 2003. Although the accelerator had an advantage in high power beam injection, extracted beams expand in the short side direction of the ground-grid slot. The disadvantage has been resolved by modifying the aperture shapes of the steering grid.  相似文献   

10.
IPP Garching is currently developing a negative hydrogen ion RF source for the ITER neutral beam system. The source demonstrated already current densities in excess of the ITER requirements (>200 A/m2 D) at the required source pressure and electron/ion ratio, but with only small extraction area and limited pulse length. A new test facility (RADI) went recently into operation for the demonstration of the required (plasma) homogeneity of a large RF source and the modular driver concept.The source with the dimension of 0.8 m × 0.76 m has roughly the width and half the height of the ITER source; its modular driver concept will allow an easy extrapolation in only one direction to the full size ITER source. The RF power supply consists of two 180 kW, 1 MHz RF generators capable of 30 s pulses. A dummy grid matches the conductance of the ITER source. Full size extraction is presently not possible due to the lack of an insulator, a large size extraction system and a beam dump.The main parameters determining the performance of this “half-size” source are the negative ion and electron density in front of the grid as well as the homogeneity of their profiles across the grid. Those will be measured by optical emission and cavity ring down spectroscopy, by Langmuir probes and laser detachment. These methods have been calibrated to the extracted current densities achieved at the smaller source test facilities at IPP for similar source parameters. However, in order to get some information about the possible ion and electron currents, local single aperture extraction with a Faraday cup system is planned.  相似文献   

11.
         下载免费PDF全文
In order to support the design,manufacture and commissioning of the negativeion-based neutral beam injection(NBI) system for the Chinese Fusion Engineering Test Reactor(CFETR),the Hefei utility negative ion test equipment with RF source(HUNTER) was proposed at ASIPP.A prototype negative ion source will be developed at first.The main bodies of plasma source and accelerator of the prototype negative ion source are similar to that of the ion source for EAST-NBI.But instead of the filament-arc driver,an RF driver is adopted for the prototype negative ion source to fulfill the requirement of long pulse operation.A cesium seeding system and a magnetic filter are added for enhancing the negative ion density near the plasma grid and minimizing co-extracted electrons.Besides,an ITER-like extraction system is applied inside the accelerator,where the negative ion beam is extracted and accelerated up to 50 kV.  相似文献   

12.
         下载免费PDF全文
A magnetic field produced by a current flowing through the plasma grid (PG) is one of the solutions to reduce the collisional loss of negative ions in a negative ion source, which reduces the electron temperature in front of the PG. However, the magnetic field diffused into the driver has some influence on the plasma outflowing. In order to investigate the effect of changing this magnetic field on the outflowing of plasma from the driver, a circular ring (absorber) of high permeability iron has been introduced at the driver exit, which can reduce the magnetic field around it and improve plasma outflowing. With the application of the absorber, the electron density is increased by about 35%, and the extraction current measured from the extraction grid is increased from 1.02 A to 1.29 A. The results of the extraction experiment with cesium injection show that both the extraction grid (EG) current and H current are increased when the absorber is introduced.  相似文献   

13.
This paper deals with the topic of RF plasma sources and their application in high-power neutral beam heating systems for nuclear fusion devices. RF sources represent an interesting alternative to the conventional arc discharge sources. Due to the absence of hot filaments they exhibit an inherent simplicity both in mechanical and electrical aspects and consequently offer advantages in terms of cost savings, gain in availability and reliability and reduced maintenance. This renders the RF plasma source attractive for any long pulse (> 10 sec) NBI system and in particular for the ITER NBI system. The latter, however, requires that the RF plasma source is also capable of delivering negative rather than positive hydrogen ions.In the first part of the paper the types, characteristics and operation experience of RF plasma sources for positive ions in operation are described. The second part is devoted to the development for ITER NBI: the basic requirements, physics and technology issues and the present status  相似文献   

14.
         下载免费PDF全文
The neutral beam injector(NBI) system was designed and developed mainly for the plasma heating on the Experimental Advanced Superconducting Tokamak(EAST). The high power ion source is the key part of the NBI. A hot cathode ion source was used on the EAST-NBI. The ion source was conditioned on the ion source test bed with hydrogen gas and achieved the designed parameters. The deuterium gas was used when it moved to the EAST-NBI. The main performance of the ion source on EAST is presented in this paper. The highest beam power of 4.5 MW in NBI-1 and 2.75 MW in NBI-2 was achieved. The total neutral beam power is about 4.5 MW. The long pulse beam of 100 s is injected into the EAST plasma too.  相似文献   

15.
孙义林  关安民 《核技术》1986,9(2):37-40,61
束流剖面监测仪是监测带电粒子束在传输过程中状态变化的一种装置。该装置的叶片式探针(以下简称探针)安装在粒子加速器、同位素分离器和离子注入机等监测位置上并由它把截获的信号显示在示波器屏上便可观察到沿束横截面束流密度分布曲线(以下简称束形)。通过束形变化我们可定性地判断束流强度、束流品质和它在束管道中的相对位置等。因此,它在国外各种类型的粒子加速器上广为使用。  相似文献   

16.
The negative-ion based neutral beam injector (N-NBI) for JT-60 has been developed for plasma core heating and neutral beam current drive in higher density plasmas. Construction of the N-NBI system was completed in 1996, and just after this completion, the efforts to increase beam power and beam energy started. The N-NBI system has already operated with negative ion beams with 14.3 A at 380 keV of deuterium and with 18.5A at 360 keV of hydrogen. During N-NBI experiments on JT-60, a deuterium neutral beam power of 5.2MW at 350keV has been injected for 0.7s stably, and the response of the JT-60 plasma to high energy beam injection with the N-NBI has been confirmed to be in agreement with a theoretical prediction.  相似文献   

17.
         下载免费PDF全文
In order to understand the physics and pre-study the engineering issues for radio frequency(RF)negative beam source, a prototype source with a single driver and three-electrode accelerator was developed. Recently, the beam source was tested on the RF source test facility with RF plasma generation, negative ion production and extraction. A magnetic filter system and a Cs injection system were employed to enhance the negative ion production. As a result, a long pulse of 105 s negative ion beam with current density of 153 A m-2 was repeatedly extracted successfully. The source pressure is 0.6 Pa and the ratio of co-extracted electron and negative ion current is around0.3. The details of design and experimental results of beam source were shown in this letter.  相似文献   

18.
         下载免费PDF全文
Neutral beam injection (NBI) has been proven as a reliable heating and current drive method for fusion plasma. For the high-energy NBI system (particle energy > 150 keV) of large-scale fusion devices, the negative ion source neutral beam injection (NNBI) system is inevitable, which can obtain an acceptable neutralization efficiency (> 55%). But the NNBI system is very complex and challengeable. To explore and master the key NNBI technology for future fusion reactor in China, an NNBI test facility is under development in the framework of the Comprehensive Research Facility for Fusion Technology (CRAFT). The initial goal of CRAFT NNBI facility is to achieve a 2 MW hydrogen neutral beam at the energy of 200–400 keV for lasting 100 s. In the first operation of the CRAFT NNBI facility, a negative ion source with dual RF drivers was developed and tested. By using the 50 keV accelerator, the long-pulse and high-current extractions of negative hydrogen ions have been achieved and the typical values were 55.4 keV, 7.3 A (~ 123 A/m2), 105 s and 55.0 keV, 14.7 A (~ 248 A/m2), 30 s, respectively. By using the 200 keV accelerator, the megawatt-class negative hydrogen beam has also been achieved (135.9 keV, 8.9 A, 8 s). The whole process of the gas neutralization of negative ion beam, electric removal of residual ions, and beam transport have been demonstrated experimentally.  相似文献   

19.
         下载免费PDF全文
Two sets of neutral beam injectors(NBI-1 and NBI-2) have been mounted on the EAST tokamak since 2014. NBI-1 and NBI-2 are co-direction and counter-direction, respectively. As with indepth physics and engineering study of EAST, the ability of long pulse beam injection should be required in the NBI system. For NBIs, the most important and difficult thing that should be overcome is heat removal capacity of heat loaded components for long-pulse beam extraction. In this article, the thermal state of the components of EAST NBI is investigated using water flow calorimetry and thermocouple temperatures. Results show that(1) operation parameters have an obvious influence on the heat deposited on the inner components of the beamline,(2) a suitable operation parameter can decrease the heat loading effectively and obtain longer beam pulse length, and(3) under the cooling water pressure of 0.25 MPa, the predicted maximum beam pulse length will be up to 260 s with 50 keV beam energy by a duty factor of 0.5. The results present that, in this regard, the EAST NBI-1 system has the ability of long-pulse beam injection.  相似文献   

20.
         下载免费PDF全文
The neutral beam injection(NBI) system was developed on the Experimental Advanced Superconducting Tokamak(EAST) for plasma heating and current driving. This paper presents the brief history, design, development, and the main experimental results of the RD of neutral beam injector on the test bed and on EAST. In particular, it will describe:(1) how the two beamlines with a total beam power of 8 MW were developed;(2) the design of the EAST-NBI system including the high power ion source, main vacuum chamber, inner components, beam diagnostic system and sub-system;(3) the experimental results of beamline-1 on the summer campaign of EAST in 2014 and,(4) the status of beamline-2 and the future plan of EAST-NBIs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号