首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
本文研究了钢渣、矿渣、石膏和粉煤灰对钢渣水泥抹面砂浆性能的影响。结果表明:钢渣水泥复合材料抗压强度和抗折强度随着钢渣掺量的增加而呈减小的趋势;矿渣(20%)复配改性钢渣水泥复合材料,28d最佳抗压强度和抗折强度(49.2MPa和6.8MPa)分别较未掺矿渣的提高了3.3%和16.2%;当脱硫石膏掺量在3%时,可提高钢渣-水泥-矿渣力学性能;当增塑剂掺量控制在0.4%,水泥抹灰砂浆施工性能较好,砂率在1:4时,钢渣水泥抹灰砂浆28d抗压强度可达到13.5MPa(满足M10等级要求),当砂率为1:5时,钢渣水泥抹灰砂浆28d抗压强度可达到7.5MPa(满足M5等级要求)。  相似文献   

2.
利用熟料、钢渣、矿渣和石膏粉配制低热钢渣矿渣硅酸盐水泥,将矿渣、钢渣掺量对水泥各种性能影响以二维等值线表征.结果表明:掺加钢渣、矿渣分别降低和增加水泥的标准稠度用水量,两者都延迟水泥的初、终凝时间,钢渣的延迟作用比矿渣大.水泥强度随着钢渣量的增加而降低,矿渣掺量对强度的影响是先随矿渣掺量的增加而提高,然后又随着矿渣掺量增加而降低,矿渣掺量存在一个最佳值.矿渣对强度的增强作用是后期比早期大,抗折比抗压大.掺入钢渣矿渣混合材都能显著降低水泥早期水化热,钢渣替代熟料降低早期水化热的值是等量矿渣替代熟料的1.5倍,双掺混合材比单掺降低早期水化热作用大.  相似文献   

3.
宋强  胡亚茹  李婷  赵胜东 《硅酸盐通报》2015,34(7):1762-1768
通过在硅酸盐水泥中加入不同掺量矿渣粉以及不同掺量和细度的钢渣粉,研究了矿渣和钢渣对水泥强度,孔结构和压蒸安定性的影响.实验结果表明:矿渣与熟料的比例是控制特定钢渣掺量的水泥28 d抗压强度的决定性因素,熟料和矿渣按照1:1混和的水泥具有最高强度,影响水泥28 d最高抗折强度则是矿渣掺量.加入钢渣增大了水泥的孔隙率,而加入矿渣则可以减少试块孔隙率;矿渣能够明显细化浆体的孔结构,钢渣矿渣水泥的28 d抗压强度主要受到大于50 nm孔隙含量的影响.水泥压蒸膨胀率随着钢渣掺量增加而增加,矿渣能够显著改善钢渣水泥的压蒸安定性.  相似文献   

4.
研究通过掺加助磨剂粉磨钢渣的方法,提高钢渣微粉的细度和活性,达到高效利用钢渣目的.结果表明,随着钢渣掺量的增加,钢渣复合水泥的抗折强度呈先上升后下降趋势,掺量为30%时抗折强度最高.钢渣复合水泥的28 d抗压强度直线下降,3 d抗压强度先增加后再下降,30%掺量时强度最高,达4.75 MPa.结合实际经济效益,最终确定钢渣复合水泥的配比为熟料-65%、钢渣-30%、石膏-5%,助磨剂A掺量为0.1%时效果最好,相比无助磨剂的钢渣复合水泥,细度降低了49.0%,且28 d抗压强度提高了6 MPa.  相似文献   

5.
权娟娟  张凯峰  王可娜 《硅酸盐通报》2017,36(12):4033-4037
采用质量分数为5%~25%的改性磷石膏、15%的硅酸盐水泥熟料、60%~80%的矿渣混合磨细制成石膏矿渣水泥,研究了改性磷石膏掺量对石膏矿渣水泥浆体的抗压强度、水化热、孔溶液pH值及水化产物的影响情况.结果表明,掺入改性磷石膏使得石膏矿渣水泥的3 d、7 d抗压强度降低,其掺量为10%、15%时,水泥的28 d、90 d抗压强度超过普通硅酸盐水泥.在3 d至90 d龄期内,水泥孔溶液pH值随龄期增长而逐渐增大.在相同龄期时,随着改性磷石膏掺量的增大,水泥孔溶液pH值减小,水化放热峰出现时间延缓.微观分析表明,掺入改性磷石膏后,28 d龄期时的水泥水化产物主要为钙矾石和C-S-H凝胶,水化产物的生成量在改性磷石膏掺量为15%时最多.  相似文献   

6.
利用950℃煅烧急冷高铝煤矸石做硅酸盐水泥混合材,掺量在15%-25%之间时,硅酸盐类水泥长龄期抗压强度不低于甚至高于不掺加混合材的同熟料I型硅酸盐水泥。42.5级硅酸盐水泥熟料掺加25%煅烧高铝煤矸石,水灰比为0.3时,水泥试件28d抗压强度达到59.95MPa,60d抗压强度达到94.175MPa。由于沸石相的形成还会赋予该材料较高的耐久性。煅烧高铝煤矸石混合材掺量在30%- 50%之间仍然可以显著提高了水泥的后期强度,并且在60d龄期时仍然保持了较高的强度增长趋势,能够达到或接近同水泥熟料的I型硅酸盐水泥强度等级。  相似文献   

7.
高标号钢渣矿渣水泥试验研究   总被引:1,自引:0,他引:1  
实验结果表明,使用外加剂N(或M)可以大幅度提高钢渣矿渣水泥的强度,3d抗压强度可增加5.0MPa, 28 d抗压强度可提高7.0 MPa,同时,硬石膏或烧石膏在促进水泥水化硬化方面要优于二水石膏。并且在钢渣 矿渣总量达70%的情况下,成功制备出42.5等级的优质水泥。  相似文献   

8.
彭美勋  张欣  林辉文  方芳 《粉煤灰》2009,21(6):18-20
在常温养护条件下,分别制备了钢渣基土聚水泥和掺入钢渣与石膏的粉煤基土聚水泥,讨论了钢渣和石膏掺量对粉煤灰基土聚水泥抗压强度的影响:随钢渣或石膏含量增加,粉煤灰基土聚水泥的早期强度增大,但28d强度减小,粉煤灰中钢渣或石膏含量为10%时,土聚水泥抗压强度均超过32.5MPa。  相似文献   

9.
矿渣-钢渣复合水泥的性能研究   总被引:1,自引:0,他引:1  
试验利用矿渣和钢渣作为配制复合水泥的辅助性胶凝材料,研究了矿渣、钢渣细度和复合比例对复合水泥强度的影响,并从颗粒堆积和复合胶凝效应的角度探讨了矿渣-钢渣在复合水泥中的作用机理。试验结果表明:在矿渣与钢渣组成的复合体系中,矿渣细度决定了复合水泥的强度,矿渣越细,复合水泥强度越高;在辅助性胶凝材料掺量一定的情况下,矿渣占的比例越高,复合水泥的强度越高;在适宜的复合比例下,用矿渣和钢渣混合配制的复合水泥28d抗压强度高于纯水泥的28d抗压强度。  相似文献   

10.
以矿渣、粉煤灰、钢渣、铁尾矿微粉、熟石灰、脱硫石膏等为原材料研究无熟料胶凝材料的制备及其胶砂、混凝土性能。结果表明:无熟料胶凝材料标准稠度用水量在28.5%~30.5%之间,初凝时间均大于150 min,终凝时间在200~460 min之间;不掺加水泥的无熟料胶凝材料,早期钢渣含量较高的通用胶砂抗压强度较高,其专用胶砂抗压强度也较高且56 d时可达50 MPa;掺入不超过胶凝材料5%的P·Ⅰ型硅酸盐水泥的无熟料胶凝材料,钢渣含量较低、石膏含量较高的通用和专用胶砂抗压强度都相对较高,较优组别专用胶砂抗压强度28 d可达35 MPa, 56 d达到45 MPa;选用胶砂强度较优的胶凝材料配比进行混凝土试验,无熟料胶凝材料混凝土工作性能良好,28 d抗压强度满足C20~C25混凝土强度要求,56 d满足C25~C30混凝土强度要求。  相似文献   

11.
赵明  张雄  张永娟  卢卫群 《水泥》2014,(1):10-13
通过试验研究了三乙醇胺(TEA)对掺矿渣粉、粉煤灰及石灰石的复合硅酸盐水泥的增强效果。结果表明,复合硅酸盐水泥的强度与混合材"矿渣粉-粉煤灰-石灰石"的组成有关,TEA对复合硅酸盐水泥的增强效果也因混合材不同而存在一定的差别。TEA可以使大部分复合硅酸盐水泥的早期抗压强度(3d)提高10%左右,早强效果显著。混合材为"30%粉煤灰-10%石灰石"时,早期抗压强度提高15%左右,早强效果尤为突出。但是,TEA对矿渣粉含量较高的复合硅酸盐水泥的早期强度改善不大,仅使3d抗压强度提高5%~10%。TEA对复合硅酸盐水泥的后期强度(28d)影响较小,抗压强度变化基本上不超过5%。  相似文献   

12.
钢渣粉做水泥掺合料的研究与探讨   总被引:2,自引:0,他引:2  
朱跃刚  李灿华  程勇 《广东化工》2005,32(11):59-62
研究了武钢钢渣粉作为水泥掺合料用于普通硅酸盐水泥、复合硅酸盐水泥和钢渣矿渣水泥的应用情况,提出了最适宜掺量以及有关配方.研究了钢渣粉掺量对水泥安定性和水化热的影响,并探讨了钢渣活性,为武钢磨细钢渣粉在水泥生产中的应用提供了技术依据.  相似文献   

13.
将400、450、500m^2/kg三个细度的钢渣微粉与细度为450m^2/kg的矿渣复合成为双掺料,配制成复合水泥。试验表明:该水泥的标准稠度需水量随钢渣掺量增加呈减小的趋势,终凝时间则逐渐延长。当钢渣掺量不变时,提高钢渣微粉的细度,水泥的标稠需水量变化不大。随钢渣掺量增加,水泥各个龄期的抗压和抗折强度呈下降趋势。在相同的掺量条件下,钢渣粉细度为400m^2/kg比表面积、掺量为10%时,28d抗压强度明显降低。提高钢渣粉细度,28d抗压和抗折强度总体上呈增加的趋势。将450m^2/kg比表面积的钢渣微粉与矿渣微粉复合为双掺料,是经济可行的技术方案。  相似文献   

14.
阿利特高炉矿渣水泥的研究   总被引:4,自引:0,他引:4  
王复生  马风平  孙瑞莲 《水泥》2002,(11):16-19
经过对多种激发剂品种、掺加量、粉磨细度等试验研究,用本试验选定的原料,制备了3d胶砂抗压强度这31.4MPa,28d胶砂抗压强度达47.5MPa的水泥,其矿渣掺加量达到水泥质量的75%,超过了国家标准对矿湘硅酸盐水泥的规定比例,是一种新品种水泥。  相似文献   

15.
在普通硅酸盐水泥砂浆中加入济钢产超细矿渣,研究不同掺量的超细矿渣对水泥浆体凝结时间及胶砂流动度、强度的影响.实验结果表明:随着掺量的提高,水泥浆体的初凝时间延长,终凝时间缩短;胶砂流动度随超细矿渣掺量的增大而减小;随超细矿渣掺量的增大,水泥胶砂的3d和28 d强度提高,当质量分数掺量为30%时,水泥砂浆28 d的抗折、抗压强度达到最大,分别达到9.65 MPa和68.44 MPa.  相似文献   

16.
张大康 《水泥》2005,(9):1-7
按正交试验方法设计了不同比例高细石灰石粉、矿渣粉和粉煤灰掺入到P.Ⅰ42.5R硅酸盐水泥中的多组样品,使用RRSB线性回归得到样品的颗粒群分布,并检验样品的物理性能。结果表明,高细石灰石粉和矿渣粉可以明显改善水泥的粒度分布,增加水泥细微颗粒含量,显著提高水泥早期、后期和长期强度。将60%的P.Ⅰ42.5R硅酸盐水泥、6%的高细石灰石粉、30%矿渣粉和4%粉煤灰混合可以配制3d、28d和90d抗压强度分别为38.5MPa、71.2MPa和76.5MPa的高强水泥,与P.Ⅰ42.5R硅酸盐水泥比较,3d、28d和90d抗压强度分别提高约7MPa、10MPa和13MPa。  相似文献   

17.
金婷艳  田秀淑  崔健  卢越  孔丽娟 《硅酸盐通报》2015,34(12):3601-3605
本文研究了碳纤维粉和钢渣对水泥基复合材料力学性能和导电性能的影响,结合SEM分析了水泥基复合材料的微观结构.试验结果表明:碳纤维粉的加入会提高试件的力学性能,当碳纤维粉掺量为0.5%时,钢渣替代量为45%时,3d抗折强度达到6.3 MPa,28 d抗折强度达到8.4 MPa;3 d抗压强度达到28.1 MPa,28 d抗压强度达到44.6 MPa;碳纤维粉和钢渣加入后,促进导电网络的形成,也会提高水泥基复合材料的导电性能;SEM分析表明,适量的碳纤维粉能均匀分散在体系内,形成密实的结构,从而促进体系力学性能和导电性能的提高.  相似文献   

18.
硅酸盐水泥对钢渣活性激发的性能研究   总被引:2,自引:0,他引:2  
单立福  周宗辉  程新 《水泥》2008,(3):8-10
试验研究了在硅酸盐水泥体系中通过碱性激发提高钢渣水化活性的方法.研究表明,钢渣掺入量<30%时,硅酸盐水泥对钢渣的活性激发效果最好;复掺矿渣对钢渣活性的激发效果优于粉煤灰,即使掺量为30%时,其早期强度也与相应龄期普通硅酸盐水泥强度持平,而后期强度逐渐超过纯水泥的强度;在普通硅酸盐水泥体系中掺入钢渣可以改善其硬化浆体的性能.  相似文献   

19.
研究了水泥、矿渣单掺和复掺时,对生土基粘结材料抗压强度的影响,优化了Mb5、Mb10、Mb15生土基粘结材料配合比.结果表明:矿渣对生土基粘结材料的增强作用优于水泥,但对生土基粘结材料抗收缩能力的提升弱于水泥;复掺水泥矿渣时矿渣掺量宜大于水泥掺量且小于10%;复掺水泥矿渣时粘结材料的14 d强度可达28 d强度的90%左右,14 d以后粘结材料强度增长缓慢.  相似文献   

20.
对钢渣作为一种混合材在复合水泥中的综合利用进行了研究,并通过X线衍射(XRD)、扫描电镜(SEM)、水化热测试、孔结构测试等现代物相检测手段,揭示钢渣复合水泥微观结构与宏观性能之间的内在联系。结果表明:钢渣能显著降低水泥的水化热,降低水泥的标准稠度用水量;钢渣水泥浆体线膨胀率很小,均没有超过0.1%,体积稳定性良好;一定掺量混合材能有效降低浆体孔隙率,改善孔径分布,提高浆体致密度;复合掺加20%钢渣、10%粉煤灰时,水泥的28 d抗折、抗压强度分别达到了8.3、48.9 MPa;钢渣和粉煤灰复合掺加有利于水泥强度发展。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号