首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 218 毫秒
1.
为解决电网电压畸变时单相电路谐波和无功电流检测问题,本文提出了基于平均有功功率的单相电路谐波和无功电流检测方法.理论分析和仿真验证表明,该方法能够实时检测出单相电路瞬时无功电流、基波无功电流及谐波电流,并且在只检测瞬时无功电流时无需锁相环电路.与基于瞬时无功功率理论的检测方法及有功电流分离法相比,该检测方法概念更清晰、...  相似文献   

2.
李剑峰  宋丹 《电气开关》2009,47(4):79-81
为了解决单相电路瞬时谐波及无功电流检测方法存在的问题,对单相电网电流进行了分解并提出了一种新的单相电路瞬时谐波及无功电流的检测方法。对该方法进行了理论分析和Matlab仿真试验,证明该方法较好的解决了单相电路中谐波及无功电流的实时检测问题,算法简化易于实现。  相似文献   

3.
单相电路谐波及无功电流实时检测的研究   总被引:3,自引:1,他引:3  
为了解决单相电路瞬时谐波及无功电流检测方法存在的不足,本文利用三角函数的有关特性,提出了一种新的单相电路谐波和无功电流实时检测方法,它通过计算得到基波有功和无功电流,进而得到谐波电流.其优点是:整个运算电路结构简单、成本低;既能单独检测出畸变电流中的任意电流分量,又能获得谐波和无功电流之和;谐波电流检测结果不受电网电压畸变的影响;引入无功及谐波电流作为反馈信号,补偿了低通滤波器的延时,加快了检测的动态响应速度.理论分析和仿真实验证实了该方法的有效性和可行性.  相似文献   

4.
实时、准确地检测出电网中的谐波电流和无功电流是进行谐波抑制和无功补偿的关键.本文在三相瞬时无功功率理论的基础提出了一种改进的单相无功电流检测算法,并建立了仿真模型,仿真结果表明:该算法可以及时、准确地检测出三相电路中的谐波电流和无功电流,同时也验证了此算法在DSP系统中的可行性.  相似文献   

5.
有功电流分离法是近年来出现的一种单相电路谐波和无功电流检测新方法.在电气化铁路中,电力机车是一个运行的、急剧变化的单相牵引负荷,当由其引起的电网电压波动较严重时,可能导致该检测方法中使用的锁相环处于失锁状态而无法进行准确检测.该文对该检测方法进行简化,提出了一种无锁相环的单相电路谐波和无功电流检测方法.理论分析和仿真证明,该方法可以实时检测出单相电路谐波和无功电流,原理简单、易于实现.  相似文献   

6.
单相级联APF谐波与无功电流检测的研究   总被引:1,自引:0,他引:1  
瞬时无功功率理论在三相电路谐波和无功电流检测中得到了广泛的应用,该理论也适用于单相电路.对基于该理论的检测方法之一即构造两相电流分量的方法进行了详细的推导,针对现有方法中的不足进行改进,新增了单独的无功电流检测环节,并给出了准确获得各电流量的关键算法.在采用该检测方法的同时,将10个H桥级联的拓扑结构应用于单相APF,运用倍频载波移相调制技术和电流PI控制实现APF的功能.大量的仿真分析证明了提出的检测方法的正确性和有效性,APF接入系统后的仿真结果表明该装置能够很好地完成谐波及无功电流的补偿功能.  相似文献   

7.
一种无锁相环的单相电路谐波和无功电流检测方法   总被引:5,自引:0,他引:5       下载免费PDF全文
有功电流分离法是近年来出现的一种单相电路谐波和无功电流检测新方法。在电气化铁路中,电力机车是一个运行的、急剧变化的单相牵引负荷,当由其引起的电网电压波动较严重时,可能导致该检测方法中使用的锁相环处于失锁状态而无法进行准确检测。该文对该检测方法进行简化,提出了一种无锁相环的单相电路谐波和无功电流检测方法。理论分析和仿真证明,该方法可以实时检测出单相电路谐波和无功电流,原理简单、易于实现。  相似文献   

8.
一种单相谐波电流检测法的研究   总被引:17,自引:3,他引:17  
为了解决单相电路瞬时谐波及无功电流检测方法存在着算法复杂的问题,对单相电网电流进行了分解并提出了一种新的单相电路瞬时谐波及无功电流的检测方法,该方法较好地解决了单相电路中谐波及无功电流的实时检测问题,算法简化易于实现。文中对检测中锁相环的作用做了理论上的分析,仿真及实验结果表明基于该检测方法的单相混合式串联有源电力滤波系统能有效的抑制电网中的谐波电流。  相似文献   

9.
单相电路谐波及无功电流检测研究   总被引:10,自引:0,他引:10  
通过静止坐标系与旋转坐标系的坐标变换关系的理论推导,得到一种新型单相电路谐波和无功电流检测模型。通过计算机仿真,得到了很好的仿真结果。理论分析与仿真结果证明了该模型的正确性。该模型不仅可以快速检测出单相电路谐波电流、基波无功电流,而且可以快速检测出基波电流及基波有功电流和基波无功电流分量。  相似文献   

10.
单相电路谐波及无动电流的一种检测方法   总被引:8,自引:0,他引:8  
本文在三相电路瞬时无功功率理论的基础上,对单相电路的电流进行了分解,提出了单相电路谐波及无功电流检测的一种方法。对该方法进行了理论分析和仿真,证明该方法是可行的,其检测性能优于以往的方法。  相似文献   

11.
将单相谐波和无功电流检测方法应用于三相系统中。在每相中分别采用与电网电压同频同相的单位正弦和余弦信号与该相负载电流相乘,经过低通滤波和处理后得到各相的瞬时基波有功电流和瞬时基波无功电流,进一步可得到谐波指令电流,和补偿谐波、无功及不平衡电流的指令电流,通过该电力滤波器补偿后,解决了三相不平衡问题,得到高的功率因数。通过仿真研究,证明了该方法的正确一性。  相似文献   

12.
单相电路瞬时谐波及无功电流实时检测新方法   总被引:46,自引:6,他引:40  
为了解决单相电路瞬时谐波及无功电流检测方法算法复杂的问题,对单相电网电流进行了分解,并提出了一种新的单相电路瞬时谐波及无功电流的检测方法,该方法采用与电网电压同频的单位正余弦信号分别与电网电流直接相乘,并经低通滤波后得到电网电流中的瞬时基波有功电流及瞬时基波无功电流,进而得到地谐波电流。对检测方法中锁相环的作用进行了详细的理论分析,指出了其可以省略而简化算法的条件,仿真和实验证明该方法能实时准确地  相似文献   

13.
三相有源电力滤波器控制方法的研究   总被引:1,自引:1,他引:0  
周林  庄华  张凤  栗秋华 《高电压技术》2007,33(3):152-155
基于单周控制的三相有源电力滤波器(APF)虽不需谐波检测电路,电路相对简单,但只能同时补偿谐波和无功电流,且要求电源电压无畸变,故有局限性。为此将ip-iq谐波检测法和单周控制方法相结合,利用ip-iq法检测负载电流的谐波和无功分量,以单周控制作为电流跟踪控制方式,推出单周控制方程,基于此的建模和仿真研究结果表明:APF可灵活地补偿非线性负载的谐波和无功电流,且补偿效果良好,有一定可行性。  相似文献   

14.
同相供电补偿电流实时检测方法   总被引:1,自引:0,他引:1       下载免费PDF全文
平均功率法同相供电补偿电流检测,需要积分一个周期才能得出检测结果,存在实时性差的缺点,且受电网电压畸变影响。提出了两种补偿电流检测方法:有延时的两相构造和无延时的两相虚拟。通过理论分析和仿真结果证明,两种方法都能达到对同相供电系统补偿电流的实时检测,平衡三相,消除三相谐波及无功电流。后者算法简单,动态跟踪速度快,检测精度高。  相似文献   

15.
关于谐波及无功电流检测方法的综述   总被引:15,自引:0,他引:15  
谐波电流的检测方法有许多种,所以有必要对各种检测方法做一比较,以便充分利用每一检测法的特点。针对建立在瞬时无功功率理论的基础上的瞬时无功和谐波电流检测算法存在的矢量变换复杂,物理意义不明确的缺陷。建立了谐波及无功电流检测系统闭环、开环的统一模型。统一模型揭示了检测系统的本质。谐波及无功电流的检测是通过抽取基波有功电流,然后,从负载电流中减掉基波有功电流来获得。基波有功电流的检测过程实质是在旋转坐标系下的低通滤波。本文提出了检测电路等效低通滤波器的优化设计方案,研究了等效滤波器的阶数、截止频率对检测系统动、静态特性的影响。最后,通过仿真和实验的验证。  相似文献   

16.
单相电路谐波及无功电流新型检测方法   总被引:11,自引:0,他引:11  
为解决单相电路有源电力滤波器对谐波及无功电流实时检测中存在的不足,根据正交函数的正交特性,提出了一种新的单相电路谐波及无功电流的检测方法,它是利用对畸变电流中的基波有功和无功电流分量分别进行分解,通过加法器、乘法器和积分器计算出谐波和无功电流。电网电压发生畸变时该法可通过增加低通滤波器进行修正,并不影响实时检测的结果。其优点是整个运算电路结构简单、成本低,只需要4个乘法器、2个加(减)法器、1个PLL和2个积分器,且所用元器件可用模拟电路实现,无延时;运算方法简单,省去了复杂的矩阵和反矩阵变换运算;既可单独检测出畸变电流中的任何电流分量,又能得出谐波和无功电流之和。理论分析和仿真实验证实了该方法的有效性和可行性。  相似文献   

17.
两种单相电路瞬时谐波及无功电流实时检测方法分析   总被引:26,自引:4,他引:26  
针对单相电路有源电力滤波器(APF)对谐波及无功电流检测的要求,本文提出了两种检测方法,并分别给出了检测原理图.前者是基于时域分析的有功电流分离法,本文对其进行了改进;后者是基于瞬时无功功率理论的谐波分离法.理论分析和仿真结果证明两种方法都能实时的检测出单相电路中瞬时谐波及无功电流,前者算法和实现更为简单.稳态和暂态运行的仿真波形证实了文中所提方法的有效性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号