首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 162 毫秒
1.
利用热重质谱分析仪(TG-MS)对热处理后肥煤样品的热解特性进行了研究,分析了热失重变化和挥发分析出规律.结果表明:随着煤样热处理温度的升高,热解过程中挥发分总产率逐渐减少,最大失重速率逐渐降低并向高温移动.在热解过程析出的挥发分中,轻气体主要有H_2,CO,CO_2和H_2O,烃类含有脂肪烃、环烷烃及苯、甲苯和二甲苯等;随着煤样热处理温度的升高,热解过程析出的挥发分中烃类减少,最大析出率对应的温度向高温移动;轻气体挥发分析出的温度区间较宽,在300℃到800℃之间.烃类析出的温度区间较窄,在400℃到600℃之间.  相似文献   

2.
采用热重分析仪和微型流化床分别考察了不同煤阶五个煤样的程序升温和等温快速热解的挥发分析出特性和反应动力学.程序升温实验揭示了热解气体的析出顺序依次为CO2,CO,CH4和H2,而等温热解实验证明CO2和CO的析出先于CH4和H2.微型流化床等温快速热解的挥发分气体总量析出活化能为17kJ/mol~35kJ/mol,小于程序升温热解的活化能.CO2和CO的反应级数与1接近,而CH4和H2的反应级数与1偏差较大,反映了这两类气体在生成机制上存在差异.  相似文献   

3.
NH3的气相氧化是低温燃烧过程中NOx(NO和NO2)与N2O的重要来源,为了深入认识其反应规律,在管式流动反应器系统中进行了实验研究。重点考察了挥发分中的可燃气(CO、CH4或H2)和NO对NH3氧化及氮氧化物排放的影响规律,并根据化学反应机理对实验结果进行了分析。研究结果表明,低温氧化性气氛下微量的可燃气就能够显著促进NH3的氧化,并使NOx和N2O的生成量大幅度升高。当可燃气体浓度相同时,H2对NH3氧化的影响最大,CO的影响最小,CH4对NH3氧化的影响略大于CO。随着可燃气体浓度的升高,其对NH3氧化与氮氧化物生成的影响先逐渐增加,然后趋于稳定。反应初始气体中存在NO时,也会加速NH3的氧化。  相似文献   

4.
煤热解特性研究   总被引:17,自引:7,他引:17  
对大雁、协庄和昔阳3个不同煤化程度的煤样,在N2,CO2和水蒸气3种不同气氛及不同温度下进行了热解研究,考察了煤化程度、热解气氛和热解温度对煤热解产物产率和热解气性质的影响规律.研究表明,对上述3个煤样,随煤化程度加深,焦产率增加,油和气产率一般随煤中挥发分增加而增加,但又与煤的大分子结构、热解温度和加热速率等有密切关系;干馏气组成H2和CH4含量协庄煤样最高,而(CO CO2)含量因煤中氧含量的降低而下降.与N2气氛相比,CO2和水蒸气气氛中半焦产率下降,气产率增加;油产率水蒸气气氛下最高.H2组分含量在水蒸气气氛下最高,而CO,CH4和烃类C2~C5组分则最低.LHV在N2,CO2和水蒸气气氛下逐次降低.  相似文献   

5.
对平朔煤在不同温度下进行了热解研究,考察了热解温度对煤热解产物产率和热解气性质的影响规律。研究表明,对上述煤样,随煤的热解温度升高,半焦产率下降,干馏气产率增加;液体率在一定温度范围内先增后降,在600℃左右达到最高。热解温度升高,热解气中H2的含量就越高,热解气中CH4的含量在热解温度550~650℃左右达到最高。随热解温度的升高,CO2的含量显著降低,烃类组分随温度升高是先升后降,峰值出现在600℃左右。  相似文献   

6.
超细煤粉快速热解动力学特性实验研究   总被引:2,自引:0,他引:2  
采用居里点裂解器及气相色谱仪研究了3种超细煤粉的快速热解特性。实验发现:超细煤粉挥发分的快速热解释放主要发生在升温阶段,烟煤与无烟煤挥发分中焦油的质量分数均最大,其中烟煤焦油释放量占挥发分的质量分数达到50%以上,高于无烟煤。烟煤气态挥发分中CO质量分数最大,达到40%以上,其次为CO2,然后依次为CH4、其他碳氢化合物CnHm,H2。无烟煤的CO,CO2,CH4释放质量分数基本相当,H2质量分数与CnHm接近。根据热解产物的释放数据,采用单方程反应模型计算出了煤粉升温速率、热解频率因子及活化能,为进一步研究超细煤粉的着火及燃烧提供了理论基础。  相似文献   

7.
用高温沉降炉研究无烟煤煤粉在830℃、880℃和930℃时热解产物中HCN、NH3、N2O、NO及NO2的析出规律.结果表明,随着温度的增加,煤样中的氮析出HCN、NO、NO2、NOx和气相含氮化合物的转化率呈先减少后增加趋势;NH3的转化率先增加后减少,NOx前驱物的转化率逐渐增加,N2O的转化率逐渐减小.NOx前驱物是煤样热解的主要气相含氮产物.  相似文献   

8.
分级处理秸秆的热解过程   总被引:10,自引:0,他引:10  
利用热重-傅立叶红外联用分析仪(TG-FTIR)研究了麦秸、汽爆麦秸、发酵麦秸的热失重特性及其气体析出行为. 实验表明,热失重过程主要分4个阶段:干燥阶段(30~150℃)、过渡阶段(150~200℃)、热解阶段(200~600℃)、炭化阶段(600~900℃);析出挥发分的机理过程分为2步:热解初始阶段发生脱羟基、脱羧基、脱烷基和解聚反应,析出含C?O?C基团、醇、醛、酸、酮和CO2, CO, H2O, CH4等气体化合物,炭化阶段发生脱烷基、羰基等反应,先后依次析出CH4, CO2, CO等气体. 汽爆、固态发酵分级处理麦秸不仅使热解干气的产率降低约20%~30%,热解液的产率增加,而且热解液中羧酸类产量分别减少了30%和50%左右.  相似文献   

9.
采用共沉淀法制备γ-A12O3载体和不同Ce添加量的CeO2-A12O3载体,然后用浸渍法制备Ni负载质量分数10%的Ni/γ-A12O3和Ni/CeO2-A12O3催化剂.在固定床微反装置中考察了反应温度、原料气配比和CH4空速等工艺条件对Ni/γ-A12O3和Ni/Ce30A170Oδ催化剂在甲烷自热重整制氢反应中催化性能的影响.结果表明,添加Ce的催化剂催化性能有较大提高,在Ni/Ce30A170O3催化剂上,反应温度750 ℃时,CH4转化率94.3%,与Ni/A12O3催化剂相比,提高20%.Ni/γ-A12O3和Ni/CeO2-A12O3催化剂的CH4转化率均随反应温度的升高而增大.原料气中n(O2):n(CH4)和n(H2O):n(CH4)的增加均能提高各催化剂的CH4转化率.但n(O2):n(CH4)和n(H2O):n(CH4)的变化对各催化剂的催化性能的影响不同.随着n(O2):n(CH4)的增大,产物中n(H2):n(CO)降低,n(CO2):n(CO CO2)升高;而n(H2O):n(CH4)增大时,产物n(H2):n(CO)和n(CO2):n(CO CO2)均升高.随着CH4空速的增加,Ni/A12O3催化剂上CH4转化率、n(H2):n(CO)和n(CO2):n(CO CO2)均较大程度下降;而在Ni/Ce30A170Oδ催化剂上,随着CH4空速的增加,CH4转化率、n(H2):n(CO)和n(CO2):n(CO CO2)变化不大.  相似文献   

10.
温度和停留时间对煤热解挥发分二次反应的影响   总被引:2,自引:0,他引:2  
在两段固定床反应器中考察了温度和停留时间对煤热解挥发分二次反应产物分布的影响. 结果表明,温度和停留时间对二次反应的影响相互关联. 温度≤600℃、停留时间小于2 s时,挥发分基本不发生气相二次反应. 随温度升高和停留时间延长,挥发分二次反应加剧,焦油产率下降,气体产率和积碳产率增加. 温度低于700℃时,焦油主要转化为气体产物,气相二次反应由二次裂解反应控制;高于700℃时,焦油转化为气体和积碳,气相二次反应由裂解反应和结焦反应共同控制. 提高二次反应温度和延长停留时间,热解气中的H2, CH4和CO产率增加,CO2产率减少,焦油中杂原子化合物及其中的酚、甲酚和二甲酚产率降低,大于3环的重质多环芳烃(PAHs)产率增加,H/C和O/C原子比降低,特别是在900℃时,随停留时间延长,H2和重质PAHs产率快速增加.  相似文献   

11.
孟德润  赵翔  周俊虎  岑可法 《化工学报》2005,56(12):2410-2414
利用一维沉降炉,对3种煤在O2/CO2和空气两种气氛下燃烧NOx析出特性进行了比较,分析了炉膛温度、过量空气系数对NOx生成量的影响,并对O2/CO2气氛下NOx的生成和破坏机理进行了分析.研究发现两种气氛下NOx都有一个峰值出现,挥发分含量高的煤种峰值靠前, 挥发分含量低的煤种峰值靠后,O2/CO2条件下,峰值出现较空气条件下提前且有所下降;空气条件下NOx的生成量随温度提高较快地增加,而O2/CO2气氛中NOx的生成量随温度变化比较缓慢;在两种气氛下NOx的峰值均随过量空气系数的增加而增加,高挥发分煤在O2/CO2气氛下NOx峰值低于空气条件下峰值,而低挥发分煤则受影响较小.  相似文献   

12.
武荣成  许世佩  许光文 《化工学报》2017,68(10):3892-3899
对比研究了神木煤和桦甸油页岩在150~400℃热预处理时的孔隙变化和挥发分析出规律以及热预处理对后续慢速升温热解反应产物的影响。结果表明,热预处理显著增加了油页岩的孔隙结构,其比表面积提高4倍、孔体积提高5倍以上,而神木煤的孔隙结构则减少了,特别是孔径大于1 nm的孔体积减少了近60%、比表面积减少了近80%,而其1 nm以下的孔则相对稳定,孔体积和比表面积分别只减少了10%左右。低于400℃时热预处理过程中除脱去吸附水外,其他挥发分也有一定析出,并以CO2为主,另有少量CO,但挥发分总失重量不超过5%。固定床慢速升温热解研究表明,经热预处理后,油页岩的油产率最高提高了22.7%,而水和气的产率则相应降低,气体中CH4增加而H2降低。热预处理对煤的热解油产率影响不明显,但热解水产率降低而热解气产率增加且其中CH4增多而H2降少。  相似文献   

13.
气化参数对气流床粉煤气化影响实验研究   总被引:1,自引:0,他引:1  
为评价和优化中国高、低灰熔点煤气化运行参数对气流床气化特性的影响,在1600℃的一维常压沉降式气流床气化实验系统上,着重研究了中国典型高、低灰熔点煤在1200~1600℃温度范围内、O/C摩尔比在0.9~1.2范围内的干煤粉气化特性。结果表明:随着温度的升高,产气中CO、H2含量逐渐增多,CO2、CH4含量逐渐减少,碳转化率有很大提高;随着O/C的增加,CO、H2含量不断减少,CO2逐渐增加;煤的灰熔融性也是影响煤气组分一个重要因素,当气化反应温度接近煤灰熔点温度时,煤气组分(CO+H2+CH4)达到一个最大值。  相似文献   

14.
再燃条件下超细煤粉热解碳氢组分的析出特性   总被引:2,自引:2,他引:0       下载免费PDF全文
金晶  张忠孝  张建民 《化工学报》2007,58(1):217-221
利用管式热解炉与气相色谱仪研究了再燃条件下超细煤粉热解过程中碳氢组分的析出规律。试验研究表明:再燃条件下超细煤粉热解时,热解产物中碳氢组分的主要成分是CH4,而C2H4、C2H6、C3H6、C3H8、C4H10的析出量相对很少;龙口褐煤碳氢组分的析出量最多,神府烟煤次之,晋城无烟煤明显低于前两者;碳氢组分的析出量随煤粉粒度的减小而增加,但煤粉粒度减小到一定程度,煤中碳氢组分析出量的增加出现饱和临界现象。以超细的龙口褐煤、神府烟煤作为再燃燃料,由于挥发分中碳氢组分析出量较多,可以强化对NOx的还原效果。  相似文献   

15.
为提高煤、天然气资源综合利用效率,优化合成气成分,进行了煤与天然气气流床共气化技术研究。介绍了煤与天然气气流床共气化的试验装置及工艺流程,考察了气化温度、压力、水煤浆浓度、CH4与煤比对共气化反应的影响。结果表明,气化温度和CH4与煤比是共气化反应的主要影响因素,较高的气化温度对共气化反应有利,气化温度为1 350℃时,共气化指标较好,有效气体积分数大于90%;随着CH4与煤比的增大,合成气n(H2)/n(CO)增高。CH4与煤比为0.9 m3/kg时,合成气中n(H2)/n(CO)约1.2。根据后续合成工艺要求,通过调节气化温度和CH4与煤比,可获得n(H2)/n(CO)在0.8~2.0的合成气。  相似文献   

16.
利用固定床反应器研究了酒糟和煤焦在CO2气氛下的共气化特性,考察了实验样品的孔隙结构、表面元素组成及灰分矿物组成. 结果表明,酒糟和煤焦在CO2气氛下共气化过程中存在协同作用,产气中除CO2外,主要产生CO, H2和CH4气体,且在酒糟掺混比例为80%时浓度最高. 气化反应温度和酒糟掺混比例是影响共气化反应的主要因素,酒糟掺混比例相同时,900?1100℃范围内随温度升高,共气化反应活性提高;温度相同时,20%?80%范围内随酒糟掺混比例增加,共气化反应活性增大. 酒糟含69.47%挥发分,且在气化过程中产生大量孔隙及酒糟和煤焦中分别含K和Ca元素对共气化反应起催化作用,是共气化反应活性提高的主要原因.  相似文献   

17.
采用热重法(TGA)研究裂殖壶藻与煤混合的热解特性及混合热解过程的相互影响. 结果表明,煤和微藻的DTG曲线半峰宽分别为225和68℃,挥发分析出的起始温度分别为225和183℃. 可见煤挥发分析出较慢,温度区间较宽. 混合物中随微藻含量增大,挥发分综合特性释放指数逐渐增大,样品热解活性增强. 微藻与煤混合热解过程相互影响程度与样品比例有关. 当煤/藻质量比为1:1时,最大失重速率的计算值与测量值相差0.83%/min,两者在热解过程中存在一定的抑制作用;当煤/藻质量比为3:1和1:3时,两者相互影响不明显. 利用Coats-Redfern法分析热解过程符合一级反应动力学模型.  相似文献   

18.
反应气氛对煤热解过程中NH3释放的影响   总被引:1,自引:0,他引:1  
为了实现煤的洁净转化 ,研究煤热解过程中 N转移的机理 ,实验在固定床反应器上采用程序升温法对碳含量不同的三种煤样进行了氩、甲烷、1 5 %水蒸气 /氩和 1 5 %水蒸气 /甲烷气氛下的煤加氢热解研究 ,主要对热解过程中产生的 NOx 主要前驱物 NH3 的释放规律及其影响因素进行了考察 .实验表明 ,由于水蒸气、甲烷提供了活性含 H集团 ,促进了热解过程中 NH3 的生成 ;另外 ,甲烷和水蒸气之间的协同作用 ,可以提供更多的活性含 H集团 .煤特性、反应温度和反应时间是影响 NH3 生成和半焦产率的主要因素 .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号