首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of membrane property on the permeate flux, membrane fouling and quality of clarified pineapple juice were studied. Both microfiltration (membrane pore size of 0.1 and 0.2 μm) and ultrafiltration (membrane molecular weight cut-off (MWCO) of 30 and 100 kDa) membranes were employed. Membrane filtration did not have significant effects on the pH, reducing sugar and acidity of clarified juice whereas the suspended solids and microorganism were completely removed. The 0.2 μm membrane gave the highest permeate flux, total vitamin C content, total phenolic content and antioxidant capacity as well as the highest value of irreversible fouling. Based on these results, the membrane with pore size of 0.2 μm was considered to be the most suitable membrane for the clarification of pineapple juice. The optimum operating conditions for the clarification pineapple juice by membrane filtration was a cross-flow velocity of 3.4 ms−1 and transmembrane pressure (TMP) of 0.7 bar. An average flux of about 37 lm−2 h−1 was obtained during the microfiltration of pineapple juice under the optimum conditions using batch concentration mode.  相似文献   

2.
A microfiltration process with a tubular ceramic membrane was applied for clarification of pineapple wine. The process was operated with the membrane pore size of 0.2 μm at transmembrane pressure of 2 bar and crossflow velocity of 2.0 m/s. The effects of gas sparging on permeate flux, fouling and quality of clarified wine were studied. It was found that a relatively low gas sparging rate could increase permeate flux up to 138%. Further increase of the gas sparging rate did not improve permeate flux compared with that without gas sparging. Gas sparging affected the density of cake layer. Increasing gas sparging rate led to an increase in specific cake resistance. It was observed that increasing gas sparging rate could reduce reversible fouling rather than irreversible fouling. The turbidity of pineapple wine was reduced and a clear product with bright yellow color was obtained after microfiltration. The negative effect of gas sparging which caused a loss of alcohol content in the wine was also observed.  相似文献   

3.
Tangerine (Citrus reticulata blanco) juice clarification by crossflow microfiltration and ultrafiltration using polysulphone flat sheet membranes with nominal molecular weight cut off of 25,000, 50,000, 100,000 and 0.1 μm, 0.2 μm pore sizes was studied. the juice was pretreated by polygalacturonase and pH adjustment. the treated juice was clarified with a laboratory scale filtration unit with effective filtration area of 14 cm2. Filtration conditions were transmembrane pressure of 93 to 194 kPa, crossflow velocity of 0.96 to 3.5 m/s and 25°C. Membrane performance was evaluated in terms of volume flux and clarity (% transmittance) of the permeate. Pretreatment of the juice by polygalacturonase and adjustment to pH 2 with HCl resulted in a clearer supernatant than enzyme treatment alone. Maximum flux was obtained with the 0.1 μm microfiltration membrane. Flux increased with transmembrane pressure and crossflow velocity. Flux at 194 kPa and 3.5 m/s was 69 L per square meter per hour. Permeate clarity was better at higher transmembrane pressure and lower velocity, due to the effect of the polarized/fouling layer of solute on the membrane surface, which acted as a secondary “dynamic” filter.  相似文献   

4.
The purpose of this work is theoretical and experimental evaluation of fouling effects on flux performance in clarification of freshly squeezed orange juice by cross-flow microfiltration. To identify optimum operating conditions to minimize fouling effects, juice was microfiltered on a laboratory scale plant varying axial velocity and transmembrane pressure difference. The observed flux decay was modeled using a modified form of the differential equation used to describe classical dead-end filtration processes. The mechanism of fouling during cross-flow microfiltration was identified by estimation of the model parameters according to a nonlinear regression optimization procedure. Analysis of the results revealed that the separation process is controlled by a cake filtration fouling mechanism as the juice is fed at relatively low velocity (i.e., Re = 5000) and the system is operated at low transmembrane pressure difference. In these operating conditions the permeate flux decays within the first 20–30 min to gradually achieve a limit value. At higher Reynolds number (Re = 15,000), an increase in applied transmembrane pressure (i.e., from 0.3 to 1 bar) allows the limit permeate flux to increase by a factor of about 4. In these conditions the filtration process is controlled by a complete pore blocking fouling mechanism, and the permeate flux becomes approximately invariant with respect to time, and a negligible decay may be observed. Evaluation of specific energy consumption involved in the filtration process is reported.  相似文献   

5.
New mineral membranes of ceramic (Ceraflo) and carbon (Carbone Lorraine), were used for apple juice clarification using cross flow microfiltration. Effect on performance of the parameters transmembrane pressure, inlet flow velocity, membrane nature, and temperature were studied. Optimum permeate flux was at a transmembrane pressure of about 3.5 bar for both membranes. Formation of a concentration layer of rejected particles was reduced by using techniques backwashing and pulsating inlet flow. These techniques provided a major flux restoration and steady state permeate flux increased by 30–50% with backwash and up to 100% with pulsating inlet flow.  相似文献   

6.
Pomegranate juice has a turbid appearance, which poses difficulties in its concentration process. Membrane clarification can be used to clarify pomegranate juice; however, membrane fouling reduces the permeate flux, limiting its effectiveness. Ultrasound at 30 kHz was used to reduce membrane fouling. Results were compared with the data obtained for membrane clarification without ultrasonic treatment at the same temperature. Results showed that permeate flux increased with ultrasonic treatment. Evaluation of different membrane fouling characteristics showed that the total membrane resistance fell due to the reduction in irreversible fouling and cake resistance. However, ultrasound did not affect the thick caking produced in membrane processing at low feed‐flow rates. Evaluation of the physicochemical properties of pomegranate juice showed that ultrasound can decrease antioxidant activity due to the reduction in total anthocyanin content. Also, total soluble solid content and acidity of pomegranate juice changed with ultrasonic treatment.  相似文献   

7.
Microfiltration of bitter gourd (Momordica charantia) extract using hollow fiber membrane module was carried out in the present study. To identify the dominant fouling mechanism, flux decline behavior was examined using Field model. At lower transmembrane pressure, pore blocking mechanism was found to be more important, while cake filtration was dominant at higher pressure. Higher cross flow rate reduced filtration constant indicating slower rate of membrane fouling. Additionally, surface and particle size analyses were undertaken to validate the findings of modeling. Scanning electron microscope analysis clearly showed prevalence of pore blocking mechanism at lower transmembrane pressure drop, whereas cake filtration was dominant fouling mechanism at higher pressure. Fourier transform infrared spectroscopy analysis supported the role of cake layer as a secondary membrane retaining some amount of polyphenols. Analysis of flux decline ratio also confirmed that for transmembrane pressure of 104 kPa and beyond, cake layer became compact, and hence, increase in cross flow rate was unable to influence the improvement of permeate flux. The current study provides an insight into the fouling mechanism involved in scaling up of clarification of bitter gourd extract for successful processing of this medicinal herb.  相似文献   

8.
膜分离技术纯化栀子黄色素的研究   总被引:8,自引:0,他引:8  
李媛媛  高彦祥 《食品科学》2006,27(6):113-117
以栀子黄色素萃取液为原料,研究陶瓷膜微滤过程中不同膜孔径、不同操作压力对渗透通量和色素液品质的影响,确定孔径200nm的陶瓷膜、0.125MPa压力下微滤为栀子黄色素纯化的最佳工艺条件。栀子黄微滤渗透液再经聚酰胺膜纳滤,1.5MPa压力下浓缩倍数达到3倍以上。  相似文献   

9.
Johannes de Bruijn 《LWT》2006,39(8):861-871
The purpose of this work was to study the fouling mechanisms of a Carbosep® M8 membrane during the cross-flow ultrafiltration of apple juice. A new fouling model has been developed that simultaneously considers membrane blocking within the pores, at the pore mouths and by cake formation at the membrane surface. Membrane fouling by apple juice was due to internal pore blocking as well as cake formation. When operating ultrafiltration at a transmembrane pressure of 150 kPa and a cross-flow velocity of 7 m/s, fouling was minimal with a gradual decrease of the relative contribution of cake formation; however, transmembrane pressure still exceeds critical pressure. The fouling model predicts no cake formation at a cross-flow velocity of 7.4 m/s and a transmembrane pressure of 150 kPa or at a cross-flow velocity of 7.0 m/s and a transmembrane pressure of 120 kPa. Under these conditions, internal membrane blocking would be the only mechanism responsible for the decrease of permeate flux.  相似文献   

10.
Clarification is the first step of inulin production from chicory juice, and membrane filtration as an alternative can greatly simplify this process, increase juice yield, improve product quality, and reduce the cost and waste volume. In this study, a rotating disk module (RDM) was used to investigate the clarification of chicory juice by four micro- and ultrafiltration membranes. Compared with dead end filtration, the RDM had a much higher permeate flux and product quality. High rotating speeds produced high permeate fluxes and reduced flux decline, because of the strong back transport of foulant from fouling layer to feed solution. At high rotating speeds of 1500–2000 rpm, the permeate flux increased with membrane pore size and transmembrane pressure (TMP), while at low rotating speeds (<1000 rpm), permeate flux was independent of membrane type and TMP due to a thick deposited fouling layer as a dominant filtration resistance, while carbohydrate transmission decreased at higher TMP because of denser cake layer as an additional selective membrane. The highest carbohydrate transmission (∼98%) and desirable permeate turbidity (2.4 NTU) was obtained at a TMP of 75 kPa and a rotating speed of 2000 rpm for FSM0.45PP membrane. With the RDM, the Volume Reduction Ratio (VRR) could reach 10 with a high permeate flux (106 L m−2 h−1) in the concentration test, and permeate was still rich in carbohydrate and well clarified. Chemical cleaning with 0.5% P3-ultrasil 10 detergent solution was able to recover 90% water flux of fouled membrane.  相似文献   

11.
We investigated the fractionation of casein micelles and the whey protein β-lactoglobulin (β-LG) of skim milk by crossflow microfiltration (0.1 μm) for the first time by a novel approach as a function of membrane length and membrane resistance. A special module was constructed with 4 sections and used to assess the effects of membrane length by measuring flux and β-LG permeation (or transmission) as a function of transmembrane pressure and membrane length. Depending on the position, the membranes were partly controlled by a deposit layer. A maximum for β-LG mass flow through the various membrane sections was found, depending on the position along the membrane. To study the effect of convective flow toward the membrane, membranes with 4 different intrinsic permeation resistances were assessed in terms of the permeation and fouling effects along the flow channel. From these findings, we derived a ratio between transmembrane pressure and membrane resistance, which was useful in reducing the effect of deposit formation and, thus, to optimize the protein permeation. In addition, the fouling effect was investigated in terms of reversible and irreversible fouling and, in addition, by differentiation between pressure-induced fouling and adsorption-induced (pressure-independent) fouling, again as a function of membrane length.  相似文献   

12.
Fresh apple juice was clarified in a pilot scale ultrafiltration (UF) unit, with membranes made of polysulfone and polyamide and plate and frame and vacuum drum filters. Flux of apple juice (L/m2 hr) vs UF transmembrane pressure data showed an optimum at a pressure of about 140 kPa. Retention of odor-active volatiles was highest in plate and frame filtered apple juice and lowest in vacuum drum filtered juice; the retention of odor-active volatiles in UF juice was intermediate to the two traditional filtration methods. Retention of odor-active volatiles in the permeate of a polyamide membrane was higher than that of a polysulfone membrane.  相似文献   

13.
Clarification of fruit and vegetable juice is one of the integrated parts of modern industrial juice processing. This paper describes the clarification of tomato juice through microfiltration process. In this regard, the influence of transmembrane pressure (1, 2 and 3 bar), cross‐flow velocity which corresponds with Reynolds number (300, 1500 and 2500) and temperature (30, 40 and 50 °C) on permeate flux and some properties of clarified juice such as colour, turbidity, density, viscosity, pH and total soluble solid have been studied. The results revealed that the investigated parameters had an increasing effect on the permeate flux and colour and the greatest effect on the permeate flux and colour was supplied by cross‐flow velocity. The other permeate properties did not significantly change with variations of the operating parameters. Eventually, the statistical analysis indicated that the interactional effect of cross‐flow velocity and TMP on the permeate flux was significant.  相似文献   

14.
This work focused on an eco-friendly process to concentrate carotenoids from a citrus juice formulated with clementine and pink grapefruit. It is based on crossflow microfiltration associated with enzymatic liquefaction, diafiltration and pasteurization. The aim was to evaluate the impact of the main operating conditions on the process performance and on the nutritional quality of the final concentrate taking into account the bioaccessibility of β-carotene, β-cryptoxanthin and lycopene. First, the best enzyme/pressure/membrane combination was chosen in order to maximize permeate flux during microfiltration (>100 kg.h−1.m−2 at 2.6 bar with tubular inorganic membranes). Second thanks to a Plackett-Burman experimental design applied to the whole process, we showed the enzymatic dose was the most impacting parameter on carotenoid bioaccessibility and it decreased it. An optimal dose of enzyme had to be defined in order to obtain a good compromise between the process performance and the nutritional quality of the citrus concentrate.  相似文献   

15.
The effects of membrane pore size and operating pressure on filtration flux, membrane fouling and solute rejections of soymilk during ultrafiltration were studied. Soymilk was concentrated from an initial level of 6.5% solid content to 20% solid content using ultrafiltration membranes. Hollow fibre cross‐flow type cartridges having molecular weight cut‐off (MWCO) as 1, 10 and 30 kDa were used in the experiments. Filtration data were satisfactorily fitted to De La Garza and Boulton's exponential model to find the exponential fouling coefficient (k) and the membrane resistance (Rm). The permeate fluxes obtained in 10 and 30‐kDa MWCO membranes were found to be approximately four times higher than that of 1‐kDa MWCO membrane, at transmembrane pressure between 100 and 240 kPa. The average flux obtained was 0.7, 3.15 and 2.7 L m?2‐h for 1, 10 and 30‐kDa MWCO membranes, respectively. The Rm value of membranes was found to decrease as the MWCO of membranes increased and transmembrane pressure decreased. The total solid content of permeates obtained by these membranes was between 0.45% and 1.4%. Membrane‐concentrated soymilk was found to have lighter colour and almost half the value of viscosity compared with evaporated milk.  相似文献   

16.
The practical application of microfiltration in brewing industry is hindered by severe membrane fouling and subsequent permeate flux decline. A theoretical and experimental study on the effect of operating parameters, which influence the crossflow microfiltration of beer and beer quality was performed. A mathematical model is developed to better understanding of the fouling layer characteristics. The experiments were conducted for different ranges of pressures, temperatures and shear rates. An optimum transmembrane pressure of 1.1 bar is suggested to maximize both the steady state and average permeate fluxes. The results of numerical simulation were in a good accordance with the experimental data.  相似文献   

17.
膜分离技术在菠萝汁澄清中的应用研究   总被引:2,自引:1,他引:2  
采用超滤膜和微滤膜对菠萝汁进行膜分离澄清实验,研究了不同操作参数(如压力、温度和时间)对膜分离效率及膜的清洗的影响,并对膜分离效果进行评价。结果表明,膜分离菠萝汁的最佳工作条件为:操作压力为0.06MPa,温度45℃;PVDF微滤膜的抗污染能力比PS超滤膜强,清洗后膜透水速率的恢复率达到了97.8%;膜分离可基本保留菠萝汁中的营养成分,有效去除果汁中的大分子物质、微生物和部分色素,大大改善了菠萝汁的外观品质和微生物指标。  相似文献   

18.
陶瓷膜在甘油发酵液除菌中的应用   总被引:1,自引:0,他引:1  
将陶瓷膜应用于甘油发酵液的除菌操作中,考察了操作参数和清洗方法对膜通量的影响。结果表明,在压差0.1MPa、温度30℃、pH值7.0和错流速度3.5m/s条件下操作,有利于提高膜通量;发酵液过滤后,先以质量浓度为1%的NaOH和质量浓度为0.2%的NaClO混合液清洗膜40min,再以质量浓度为0.5%的HNO3溶液清洗5min,膜通量可迅速恢复。因此,陶瓷膜在甘油发酵液的除菌中是高效可行的。  相似文献   

19.
In this study, the performance of two membranes were compared – tubular ceramic and hollow fiber poly(imide) – under transmembrane pressure of 0.5 and 1 bar, for the clarification of passion fruit pulp pre-treated by centrifugation and enzymatic treatment at the concentrations of 150 and 300 ppm. Nutritional and sensorial qualities of the clarified juice obtained were evaluated. Thus, it was possible to observe that the most adequate condition for the clarification of passion fruit pulp was with enzymatic treatment at 150 ppm and its posterior microfiltration at the ceramic tubular membrane of 0.3 μm with transmembrane pressure of 0.5 bar. The fouling mechanism was identified by estimation of model parameters according to a nonlinear regression by Bayesian inference. Analysis of the fouling mechanism results revealed that hollow fiber membrane is controlled by a cake filtration mechanism, and internal pore blocking fouling mechanism controls ceramic tubular membrane.  相似文献   

20.
This study deals with the performance of a tubular ultrafiltration system on sieved and centrifuged olive mill waste water. A generalized statistical model was developed describing the impact and the relative importance of major experimental parameters (membrane pore size, transmembrane pressure, feed flow rate, and feed temperature) on permeate flux. According to this model, process pressure appeared to have the largest impact on permeate flux, followed by process temperature. As membrane treatment of such a difficult material largely depends on fouling, a systematic analysis of prevailing fouling mechanisms was also run. Despite sieving and centrifugation of the original waste, membrane fouling caused a flux decline of 60–65% within 15–20 min. Internal fouling, pore blocking, and cake layer formation were all responsible for membrane fouling during the first 40 min of operation. After that period, cake formation appeared to play a predominant role. Based on the proposed generalized model, the relative importance of process parameters can be evaluated and process performance can be improved by proper interventions. Independent of membrane size, fouling is a serious problem to be resolved. The qualitative performance of this process, including chemical oxygen demand distribution, polyphenol profile, and antioxidant capacity, is discussed in a separate paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号