首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 62 毫秒
1.
用固相法合成LiFe1-xYxPO4 (x=0, 0.01, 0.02, 0.03, 0.04)锂离子电池正极材料,采用X射线衍射仪、扫描电子显微镜、粉末比电阻法和充放电性能测试表征材料的晶体结构、微观形貌、电子电导率和电化学性能。结果表明,少量的钇掺杂并未改变材料的晶体结构,但改善了材料的微观结构,提高其电子电导率,改善可逆容量和电化学性能。在10 mA/g的电流密度下,LiFe0.97Y0.03PO4首次放电容量可达146.54 mAh/g。  相似文献   

2.
介绍了LiFePO4正极材料的结构特点和反应机理,详细讨论了金属离子掺杂、碳包覆和控制活性材料的尺寸等改性研究对LiFePO4材料的电化学性能的影响.从而进一步优化高性能锂离子电池正极材料的改性过程,促进锂离子电池性能的改善.  相似文献   

3.
以Li2SiO3、Mn(CH3COO)2.4H2O和Al(OH)3为原料,用传统高温固相合成法成功制备出Li2Al0.1Mn0.9SiO4锂离子电池正极材料。采用XRD、FESEM分析了正极材料的相组成、结构和形貌,利用电池测试仪测试了正极材料的电化学性能。研究结果表明,固相合成的产物主相为Li2Al0.1Mn0.9SiO4,同时存在少量的杂质,产物表面形貌为非球形颗粒,颗粒尺寸为100~500 nm。实验结果表明,Al掺杂后,正极材料的可逆容量和循环寿命都得到提高。正极材料电化学性能提高的机理在于Al掺杂稳定了Li2MnSiO4正极材料的结构。  相似文献   

4.
LiFePO4/C锂离子电池正极材料的电化学性能   总被引:7,自引:2,他引:7  
以碳凝胶作为碳添加剂,采用固相法制备了复合型LiFePO4/C锂离子电池正极材料.研究了不同掺碳量对样品性能的影响.利用X射线衍射仪、扫描电镜和碳硫(质量分数)分析方法对所得样品的晶体结构、表面形貌、含碳量进行分析研究.结果表明:样品中的碳含量(质量分数)分别为0%、5%、10%、22%,所得样品均为单一的橄榄石型晶体结构,碳的加入使LiFePO4颗粒粒径减小.另外,碳分散于晶体颗粒之间,增强了颗粒之间的导电性.合成样品的电化学性能测试结果表明,掺碳后的LiFePO4放电比容量和循环性能都得到显著改善.其中,含碳量为22%的LiFePO4/C在0.1 C倍率下放电,首次放电容量达143.4 mA·h/g,充放电循环6次后电容量为142.7 mA·h/g,容量仅衰减0.7%.  相似文献   

5.
锂离子电池新型正极材料LiFePO4的研究进展   总被引:1,自引:0,他引:1       下载免费PDF全文
橄榄石结构的LiFePO_4作为锂离子电池的一种新型正极材料,具有原料来源广泛、价格低廉、对环境友好、能量密度和理论容量高、放电电压稳定、热稳定性和循环性好等优点,是下一代锂离子电池正极材料有力的竞争者.本文介绍LiFePO_4正极材料的结构与性能以及存在的问题:综述制备LiFePO_4的各种方法,即固相合成和液相合成两类,比较各种方法的优缺点;探讨近年来国内外对于改善LiFePO_4电化学性能所进行的研究工作,并对其发展前景进行了展望.  相似文献   

6.
一种新型的锂离子电池正极材料——LiFePO4   总被引:10,自引:1,他引:10       下载免费PDF全文
介绍了1种新型的锂离子电池正极活性材料LiFePO4并解释了材料的结构特征和电化学过程。LiFePO4具有较高的比容量和良好的循环稳定性等优良的电化学性能,但是目前还存在着制约容量释放的锂离子扩散系数小以及材料导电性能不太好等问题。在回顾该材料研究状态的基础上,说明了只要通过选取适当的制备工艺和进行合适的表面改性可以制备出具有优良电化学性能的LiFePO4粉体。这种粉体具有环境相容性、便宜以及资源丰富等诸多优点,是1种颇具潜力的锂离子电池正极替代材料。  相似文献   

7.
Li2Mn0.9Ti0.1SiO4锂离子电池正极材料的合成及其性能   总被引:1,自引:0,他引:1  
以Li2SiO3、Mn(CH3COO)2·4H2O和TiO2为原料,利用传统高温固相合成法成功合成出Li2Mn0.9Ti0.1Si04锂离子电池正极材料.采用XRD、FESEM等手段分析了正极材料的相组成、结构和形貌,利用电池测试仪测试了正极材料样品的电化学性能.研究结果表明,固相合成的产物主相为Li2Mn1-x,TLSiO4,同时存在少量的杂质,掺杂Ti后,材料表面形貌从近球形转变为非球形颗粒,颗粒尺寸略有增大,为200~500nm.实验结果表明,Ti掺杂以后,Li2MnSiO4正极材料的可逆容量和循环寿命都得到提高.正极材料电化学性能提高的机理在于Ti掺杂稳定了Li2MnSiO4正极材料的结构.  相似文献   

8.
采用高温固相法合成了锂离子电池正极材料LiFePO4及改性的LiFe0.9Ni0.1PO4和LiFe0.9Ni0.1PO4/C材料。采用X射线衍射仪和扫描电镜分析样品的晶体结构和表面形貌。结果表明:改性后的LiFe0.9Ni0.1PO4和LiFe0.9Ni0.1PO4/C材料与LiFePO4一样均为单一的橄榄石结构。以20 mA/g电流密度充放电,LiFe0.9Ni0.1PO4的首次放电容量为140 mA.h/g,较LiFePO4增加了12%;而复合掺杂得到的含碳量为2.8%的LiFe0.9Ni0.1PO4/C材料,首次放电容量达162 mA.h/g,充放电循环30次后放电电容量仍为147 mA.h/g,容量衰减仅为9%。当充放电电流密度提高到80 mA/g时,LiFePO4、LiFe0.9Ni0.1PO4和LiFe0.9Ni0.1PO4/C的放电容量分别为86、114和140 mA.h/g。改性后的LiFe0.9Ni0.1PO4/C的电化学性能得到了较大的改善。  相似文献   

9.
Mg2+掺杂对LiFePO4结构及电化学性能的影响   总被引:1,自引:0,他引:1  
以MgAC2为掺杂源,采用固相反应法在惰性气氛下合成了掺Mg的LiFePO4正极材料,考察了Mg2 对于目标化合物物理及电化学性能的影响.采用粉末X射线衍射和扫描电镜技术对产物的结构、形貌及粒度等进行了表征,通过恒电流充放电和交流阻抗技术对其电化学性能进行了研究.结果表明:少量的Mg2 掺杂并未影响产物结构,但却有利于减小LiFePO4电荷转移过程中的阻抗,克服该过程中的动力学限制.在0.1C倍率下放电,掺杂LiFePO4与未掺杂LiFePO4的初始放电容量分别为136.9和111.8 mA·h/g,循环50次后,容量分别为135.6和83.9 mA·h/g;与未掺杂的LiFePO4相比,掺镁后的LiFePO4具有更为优良的循环性能.  相似文献   

10.
镍离子掺杂对LiFePO4结构和性能的影响   总被引:8,自引:2,他引:8  
为提高LiFePO4的充放电性能,用Ni2 对LiFePO4进行掺杂.采用电化学方法测量了Li1-xNixFePO4的充放电性能,用X射线衍射和里特沃尔特方法表征了掺杂LiFePO4的晶体结构.固相反应可制备单相Li1-xNixFePO4(x=0.00、0.01、0.02、0.03、0.05和0.07,摩尔分数).研究表明:少量镍离子掺杂能有效地提高LiFePO4的比容量和循环性能,其中Li0.97Ni0.03FePO4具有更好的电化学性能,放电比容量高出LiFePO4约30mA·h/g,其主要原因是镍离子掺杂不仅改变了晶体中原子间距离和位置,引起晶胞收缩;而且增加了LiFePO4中Fe3 /Fe2 共存态的浓度,提高了材料的导电能力.  相似文献   

11.
采用1,2-丙二醇作为表面活性剂,在水热反应中合成正极材料LiFePO4。用XRD、SEM、粒径分布测试和恒电流充放电方法,分别研究了1,2-丙二醇对LiFePO4的结构、形貌、粒径和电化学性能的影响。结果表明:加入适量的丙二醇不改变LiFePO4的橄榄石结构,但可使材料的结晶粒度变小,粒径分布变得均匀;当丙二醇加入量为10 mL时,得到的LiFePO4平均粒径d(0.5)=1.128μm,粒径分布范围为0.316~6.607μm;该材料在0.2C倍率下的首次放电比容量为144 mAh/g,循环性能良好。  相似文献   

12.
采用溶胶-凝胶法制备了LiFePO4/C正极材料.采用X射线衍射(XRD)、扫描电镜(SEM)和电化学手段对材料进行了结构表征和性能测试.研究了其前驱体体系pH值对材料性能的影响.结果表明:当前驱体体系pH值为8.4时,LiFePO4/C正极材料具有最佳的电化学性能.在0.1C倍率下充放电,磷酸铁锂首次放电比容量为16...  相似文献   

13.
采用固相反应法在惰性气氛下合成了橄榄石型LiFePO4及其Ni^2+掺杂正极材料,采用XRD,SEM和充放电等方法对目标材料进行了表征。XRD分析表明,掺杂少量Ni^2+后的LiFePO4晶体结构并未发生变化;SEM观察发现,掺杂后,样品的粒径变小;充放电测试得出,比未掺杂的LiFePO4具有更好的电化学性能,首次放电比容量达145mAh·g^-1,高于纯的LiFePO4正极材料的容量90mAh·g^-1,经100次循环后掺杂Ni^2+的LiFePO4和LiFePO4样品的容量保有率分别为91%和53%。  相似文献   

14.
以NH4FePO4·H2O制备LiFePO4及其性能研究   总被引:1,自引:0,他引:1  
用FeSO4,H3PO4,NH3·H2O为原料合成NH4FePO4·H2O前驱体,再与Li2CO3和蔗糖均匀混合,通过高温固相反应法合成了LiFePO4正极材料.用X射线衍射和扫描电镜分析对NH4FePO4·H2O和LiFePO4的结构进行了表征.研究了不同含碳量对LiFePO4晶体结构和电化学性能的影响.结果表明,NH4FePO4·H2O前驱体和LiFePO4具有结构相似性,在高温固相反应时NH4FePO4·H2O与Li2CO3发生置换反应.材料具有较好的电化学性能.  相似文献   

15.
本文首次采用PEG固相还原Fez0。成功地制备了LiFePO。锂电池用正极材料。通过XRD、SEM表征了材料的相态和形貌,采用恒电流充放电法研究了材料的电化学性能。SEM图上可观测到材料呈现出微米球形团簇结构和蜂窝状的表面;XRD结果表明,晶相为橄榄石型磷酸铁锂。对电池的电化学测试表明,制备的LiFeP0。材料表现出优良倍率性能和循环稳定性,在0.1C和O.3C下,放电比容量分别为139.9mAh/g和127.5mAh/g,30次循环后比容量没有衰减。这种以廉价铁盐Fe2O3的PEG固相还原制备,为锂电池正极材料LiFePO4低成本制备提供了新的方法。  相似文献   

16.
溶胶-凝胶法制备LiFePO_4/C复合材料及其性能   总被引:2,自引:1,他引:2  
为了提高LiFePO4的电化学性能,以柠檬酸为络合剂和碳源,采用溶胶-凝胶法制备LiFePO4/C复合正极材料。采用FTIR和XRD等对前驱体及产物进行表征,并测试样品的电化学性能。结果表明:经700℃烧结10h所得产物具有单一的橄榄石型晶体结构,碳含量为10.81%(质量分数)。样品在0.1C下首次放电比容量为127.1mA·h/g,在0.2C、0.5C、1C下首次放电比容量分别为106.1、83.3、70.6mA·h/g。该样品在0.1C下经过20次循环后,容量还保持为126.3mA·h/g,衰减仅为0.035%。循环伏安和交流阻抗测试表明该材料具有较好的电化学性能。  相似文献   

17.
三价铁源对碳热还原法制备LiFePO4/C结构和性能的影响   总被引:1,自引:0,他引:1  
以有机(柠檬酸铁)和无机(Fe2O3或Fe3O4)三价铁混合物为铁源,以有机铁源中的有机酸根为碳源和还原剂,通过固相-碳热还原法制备LiFePO4/C正极材料,考察无机三价铁源对正极材料结构和性能的影响.采用XRD、SEM和恒流充放电测试等方法对正极材料的结构、表观形貌及电化学性能进行研究.结果表明:以Fe2O3为无机三价铁源合成的LiFePO4/C材料的晶相单一、晶粒尺寸较小、电化学性能较好,以0.1C放电时,其第三次放电比容量达136 mA-h/g,循环20周后基本无衰减;而由Fe3O4为铁源制得的材料中含有其它杂质相,晶粒尺寸较大,电化学性能较差,以0.1C放电倍率放电时,其第三次放电比容量仅为118 mA-h/g,循环20周后衰减近17%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号