首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以聚四氢呋喃二醇(PTMG)和聚己内酯二醇(PCL)为软段原料,2,4-甲苯二异氰酸酯(2,4-TDI)、4,4'-二苯基甲烷二异氰酸酯(MDI)、3,3'-二氯-4,4'-二氨基二苯基甲烷(MOCA)和1,4-丁二醇(BDO)为硬段原料,采用预聚体法合成3种聚氨酯弹性体材料,研究了不同类型的聚氨酯弹性体的物理机械性能、高温物理机械性能以及耐乳化液性能。结果表明,聚氨酯弹性体PTMG-MDI-BDO和PCL-MDI-BDO的常温物理机械性能优于PTMG-TDI-MOCA; PTMG-TDI-MOCA在80℃和100℃下的高温物理机械性能优于PTMG-MDI-BDO和PCL-MDI-BDO;含MDI-BDO硬段的聚氨酯弹性体耐85℃水乳化液性能优于含TDI-MOCA硬段的。PCL-MDI-BDO是3种聚氨酯弹性体中最适合用作采煤机械液压支护设备油缸密封件的材料。  相似文献   

2.
采用预聚物法,选用二苯基甲烷二异氰酸酯(MDI)体系考察了聚己内酯二醇PCL220N和聚四氢呋喃PTMG1000配比对聚氨酯弹性体性能的影响。结果表明,当PCL220N/PTMG1000配比为80/20时,用其制得的聚氨酯弹性体力学性能较为优异;当PCL220N/PTMG1000配比为70/30时,弹性体损耗模量和损耗因子都最低;储能模量、耐磨性和回弹性都随PTMG1000用量的增大而增大。  相似文献   

3.
分别以聚己内酯二醇(PCL)、聚碳酸酯二醇(PCDL)、聚己二酸-1,4-丁二醇酯二醇(PBA)以及聚四氢呋喃二醇(PTMG)为软段,4,4'-二苯基甲烷二异氰酸酯(MDI)和1,4-丁二醇(BDO)为硬段,采用预聚体法合成4种基于不同软段的聚氨酯弹性体。通过机械性能测试、热失重分析、动态力学性能测试及不同温度下的力学性能分析,研究低聚物二醇种类对聚氨酯弹性体的力学性能和耐热性能的影响。结果表明,以聚酯多元醇作为软段制得的聚氨酯弹性体的耐热性要优于聚醚型;几种聚酯型聚氨酯弹性体中,PCL型聚氨酯弹性体的热稳定性以及不同温度下的力学性能保持率最高,耐热性最好;动态力学性能分析表明,在高弹态平台区PCL型聚氨酯的损耗因子较小,动态内生热较小,且储能模量下降较缓慢,动态力学性能最好。  相似文献   

4.
刘凉冰  贾林才  刘红梅 《弹性体》2007,17(6):34-36,49
以聚已二酸乙二醇丙二醇酯(PEPA)、4,4'-二苯基甲烷二异氰酸酯(MDI)为原料,用1,4-丁二醇(BDO)扩链剂或混合扩链剂制备了聚氨酯(PU)弹性体。讨论了预聚体NCO基质量分数、扩链剂和催化剂用量对聚氨酯弹性体力学性能的影响;同时,比较了MDI/BDO体系与2,4-甲基二异氰酸酯/3,3'-二氯-4,4'-二胺基二苯甲烷(TDI/MOCA)体系的性能。结果表明,聚氨酯弹性体的硬度、模量和强度随预聚体NCO基含量增加而增加;提高扩链剂的三元醇含量,弹性体力学性能呈下降趋势;MDI/BDO体系的扯断伸长率和撕裂强度比TDI/MOCA体系高。  相似文献   

5.
用聚酯多元醇(PBA、PEA、PEPA、PCL)、4,4'-二苯基甲烷二异氰酸酯(MDI)和混合扩链剂等原料合成了浇注型聚氨酯弹性体(PUE)。考察了聚酯多元醇种类、预聚体-NCO质量分数、扩链剂和扩链系数(R)等对PUE力学性能的影响,并比较了MDI/混醇体系与2,4-甲苯二异氰酸酯(TDI)/MOCA体系的性能。结果表明,PUE的硬度、模量和撕裂强度随预聚体-NCO含量增加而增加,随交联密度提高,撕裂强度和扯断伸长率下降,R>1.05时,PUE的力学性能急剧变化,MDI/混醇体系比TDI/MOCA体系的冲击弹性好。  相似文献   

6.
以不同结构聚酯多元醇(PEA、PEPA、PBA、PCL)为软段,4,4′-二苯基甲烷二异氰酸酯(MDI)和1,4-丁二醇(BDO)为硬段采用预聚法合成了聚氨酯(PU)弹性体。讨论了MDI/BDO体系中软段种类、相对分子质量、预聚体NCO含量及催化剂对PU弹性体力学性能的影响,并与TDI/MOCA体系进行比较。结果表明,当软段相对分子质量相同时,以PBA为原料合成的PU弹性体硬度最高,弹性体的拉伸强度、伸长率和冲击弹性均随软段相对分子质量的增加而增加;提高预聚体NCO含量可使PU弹性体的硬度、撕裂强度和300%模量增加;但加入催化剂的PU弹性体,其拉伸强度下降16.6%~20.1%;MDI/BDO体系PU弹性体的撕裂强度和冲击弹性较高,TDI/MOCA体系PU弹性体的拉伸强度较好、永久变形较低。  相似文献   

7.
采用有机插层蒙脱土(PU-C5)和分散剂分别对四氢呋喃均聚醚(PTMG)/2,4-甲苯二异氰酸酯(TDI)/3,3-二氯-4,4—二氨基二苯基甲烷(MOCA)和PTMG/4,4′-二苯甲烷二异氰酸酯(MDI)/1,4-丁二醇(BDO)两种体系的浇注聚氨酯弹性体进行纳米改性。改性后的弹性材料浸泡90℃含碱热水(pH=8.5)中老化试验一个月。实验结果表明,加入分散剂的PTMG/MDI/PU-C5/BDO体系纳米复合材料的耐热水性能最佳,拉伸强度和撕裂强度保持率分别为57.52%和82.38%。经动态力学试验(DMA)表明,PTMG/MDI/PU-C5/ME60纳米复合材料的储存模量(E′)和损耗模量(E″)明显增加。  相似文献   

8.
高性能浇注型聚氨酯弹性体的耐热性能   总被引:2,自引:1,他引:1  
用不同结构的多元醇和二异氰酸酯合成了一系列浇注型聚氨酯弹性体(PU),研究了PU的物理机械性能、耐热性和动态力学性能.结果表明,当二异氰酸酯选为对苯二异氰酸酯(PPDI)、扩链剂为1,4-丁二醇(BD)时,不同结构的多元醇制备PU的耐热性从优到劣依次为聚己内酯二醇体系,聚己二酸1,4-丁二醇酯体系,聚碳酸酯二醇(PCD)体系,聚四亚甲基醚二醇体系;当多元醇选取PCD、扩链剂为BD时,不同结构的二异氰酸酯制备PU的耐热性从优到劣依次为1,5-萘二异氰酸酯(NDI)体系,对苯二异氰酸酯(PPDI)体系,3,3'-二甲基联苯-4,4'-二异氰酸酯(TODI)体系,4,4'-二苯基甲烷二异氰酸酯(MDI)体系;TODI、NDI制备PU的动态力学性能优于PPDI和MDI制备的PU.  相似文献   

9.
以二苯基甲烷二异氰酸酯(MDI)和甲苯二异氰酸酯(TDI)共混二异氰酸酯为原料,合成一系列聚氨酯弹性体制品,讨论了MDI/TDI摩尔比、扩链剂种类、聚醚多元醇种类等对聚氨酯弹性体制品性能的影响。结果表明,当MDI/TDI摩尔比为1∶1时,具有最高的伸长率,但拉伸强度和撕裂强度有所降低;以3,3′-二氯-4,4′-二苯基甲烷二胺(MOCA)作为扩链剂时,性能优于3,5-二甲硫基甲苯二胺(E-300)和1,4-丁二醇(BDO);采用聚醚DL-1000合成聚氨酯弹性体时,其拉伸强度和撕裂强度优于聚醚DL-2000,但伸长率降低。  相似文献   

10.
分别以聚ε-己内酯多元醇(PCL)、聚四氢呋喃醚二元醇(55PTMG)和甲苯二异氰酸酯(TDI)为原料合成聚氨酯预聚体,分别用M-CDEA[4,4′-亚甲基-双-(3-氯-2,6-二乙二基苯胺)]和3,3’-二氯-4,4’-二氨基二苯基甲烷(MOCA)作为扩链剂合成聚氨酯弹性体,比较了两种不同扩链剂对聚氨酯弹性体的力学性能和耐热性能的影响。实验结果表明:与MOCA相比,由M-CDEA扩链的聚氨酯弹性体的硬度、撕裂强度、回弹和耐磨性较高。DSC和TG测试结果表明:经M-CDEA扩链的聚氨酯弹性体的耐热性能优于MOCA。  相似文献   

11.
以甲苯二异氰酸酯(TDI)、混合型亲水聚醚多元醇、三羟甲基丙烷(TMP)、1,4-丁二醇(BDO)和3,3'-二氯-4,4'-二氨基-二苯基甲烷(MOCA)等为主要原料,采用预聚体法合成了双组份遇水膨胀聚氨酯弹性体。研究了聚醚多元醇配比,异氰酸酯含量,扩链剂种类及配比等对弹性体性能的影响。结果表明:当聚乙二醇/聚丙二醇质量比是80/20,游离异氰酸酯质量分数是4.2Wt%时,弹性体的综合性能好;用TMP/MOCA作混合扩链剂比TMP/BDO作混合扩链剂的弹性体机械性能好。  相似文献   

12.
聚四甲撑二醇热塑性聚氨酯弹性体的合成研究   总被引:1,自引:0,他引:1  
七十年代初期,以聚四甲撑二醇(PTMG)为主要原料的聚醚型热塑性聚氨酯弹性体开始有商品生产。我们用PTMG和4,4′-二苯基甲烷二异氰酸酯(MDI)合成了具有较好物理机械性能和加工工艺性能的聚四甲撑二醇热塑性聚氨酯(PTMG-TPU)弹性体。  相似文献   

13.
以聚己内酯二醇(PCL)和4,4′-二苯基甲烷二异氰酸酯(MDI)为原料,用二元醇1,4-丁二醇(BDO)和三元醇(TMP)混合物作扩链剂制备了聚氨酯(PU)弹性体,研究了预聚体NCO基含量、扩链剂用量和扩链系数对聚氨酯弹性体力学性能的影响。结果表明,聚氨酯弹性体的硬度、模量和强度随预聚体NCO基含量的增加而增加,扩链剂三元醇质量分数超过20%后,弹性体力学性能下降幅度较大,扩链系数大于0.95时,聚氨酯的力学性能急剧降低。  相似文献   

14.
以不同结构聚酯(PEA、PEPA、PBA、PCL)为软段,4,4'-二苯基甲烷二异氰酸酯(MDI)和1,4-丁二醇(BDO)为硬段采用预聚体法合成了聚氨酯(PU)弹性体。讨论了MDI/BDO体系中软段种类、相对分子质量、预聚体NC0质量分数及催化剂对聚氨酯弹性体力学性能的影响,并与TDI/MOCA体系进行比较。结果表明,当软段相对分子质量相同时,PBA—PU的硬度最高提高预聚体NCO质量分数可使PU弹性体硬度、撕裂强度和300%模量增加;在制备聚氨酯弹性体中,加入催化剂的弹性体拉伸强度下降16.6%~20.1%;MDI/BDO体系的PU弹性体撕裂强度和冲击弹性较高,TDL/MOCA体系的PU弹性体拉伸强度较好、永久变形较低。  相似文献   

15.
分别以聚四氢呋喃二醇(PTMG)、聚氧化丙烯二醇(PPG)及两者共混物(PTMG/PPG)作为软段,以2,4-甲苯二异氰酸酯(TDI)和扩链剂3,3'-二氯-4,4'-二氨基二苯甲烷(MOCA)作为硬段,采用预聚体法,制备了5种不同PTMG/PPG配比的浇注型聚氨酯弹性体(CPU)。研究了PTMG/PPG不同的配比对CPU的力学性能和微观相分离的影响。结果表明,纯PTMG型聚氨酯力学性能优于纯PPG型聚氨酯性能,随着PPG在混合聚醚多元醇的比例增加,所形成的CPU的力学性能出现一定程度的下降。纯PTMG型聚氨酯的玻璃化转变温度(Tg)低于纯PPG型聚氨酯的Tg,随着PPG在混合聚醚中的配比增加,所合成相应的聚氨酯弹性体的Tg移向高温区,微观相分离程度减小。  相似文献   

16.
分别以聚四氢呋喃二醇(PTMG)、聚碳酸酯二醇(PCDL)为低聚物二醇原料,异佛尔酮二异氰酸酯(IPDI)和4,4'-二环己基甲烷二异氰酸酯(HMDI)为二异氰酸酯原料,以二羟甲基丙酸(DMPA)和1,4-丁二醇(BDO)为扩链剂,通过丙酮法合成水性聚氨酯(WPU)乳液.研究了 PTMG和PCDL、IPDI和HMDI对...  相似文献   

17.
以聚醚聚四氢呋喃醚二醇(PTMG)或聚丙二醇(PPG)与异氰酸酯4,4′-二苯基甲烷二异氰酸酯(MDI)或2,4-甲苯二异氰酸酯(TDI)作原材料合成了预聚体;以3,3'-二氯-4,4′-二胺基二苯甲烷(MOCA)为扩链剂制备了PU弹性体;采用手糊成型方法制备了聚氨酯(PU)/玻璃纤维(GF)复合材料。研究了2种预聚体制备的PU弹性体力学性能、玻璃纤维厚度和层数以及复合材料密度对PU/GF复合材料力学性能的影响,以及GF与PU弹性体的粘结强度。结果表明,MDI/MOCA-PU比TDI/MOCA-PU的力学性能优异;随着玻璃纤维厚度和层数的增加,复合材料力学性能提高;密度对PU/GF复合材料的拉伸强度有显著影响;用硅烷偶联剂处理过的玻璃纤维可提高复合材料剥离强度。  相似文献   

18.
聚氨酯弹性体介电性能的研究   总被引:1,自引:0,他引:1  
通过对比不同种类、不同相对分子质量多元醇以及不同异氰酸酯,研究了聚氨酯弹性体(PUE)结构与材料介电性能(体积电阻率、介电常数、介电损耗)的关系。结果表明,当多元醇种类变化时,聚氧化丙烯二醇(PPG)型PUE介电损耗最大;聚四氢呋喃二醇(PTMEG)型PUE、介电常数、介电损耗都最小;聚己内脂二醇(PCL)型PUE体积电阻率和介电常数最大。当多元醇相对分子质量增加时,PUE体积电阻率减小,介电常数和介电损耗增加;二苯基甲烷二异氰酸酯/1,4-二羟基丁烷(MDI/BDO)型PUE与甲苯二异氰酸酯/3,3’-二氯-4,4’-二氨基二苯甲烷(TDI/MOCA)型PUE相比,体积电阻率更低、介电常数和介电损耗更高。  相似文献   

19.
二胺固化MDI型聚氨酯弹性体   总被引:1,自引:0,他引:1  
采用聚四氢呋喃二醇(PTMG)和二苯基甲烷二异氰酸酯(MDI)合成预聚物,经3,3’-二氯-4,4’-二苯基甲烷二胺(MOCA)扩链合成了聚氨酯弹性体,测定了其物理性能和高温性能。结果表明,该体系弹性体具有良好的物理机械性能,尤其是其高温性能更加突出,120℃时撕裂强度保持率可达40%,用该体系制得的矿用磨盘,使用寿命是甲苯二异氰酸酯(TDI)体系的3倍以上,显示出良好的应用前景。  相似文献   

20.
TODI类浇注型聚氨酯弹性体的耐热性能研究   总被引:2,自引:0,他引:2  
用3,3'-二甲基-4,4'-联苯二异氰酸酯(TODI)与聚四氢呋喃(PTMG)、聚己内酯多元醇(PCL)合成了一系列浇注型聚氨酯弹性体,考察了不同聚合物多元醇、扩链剂以及硬段含量对弹性体耐热性能和力学性能的影响.结果表明:PCL体系的耐热性能和力学性能优于PTMG体系,其拉伸强度在120℃下保有率>90%;用3,3'...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号