首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In order to assess the structural integrity of tubular members or pipes containing circumferential through‐wall cracks, their stress intensity factor solutions are required. While stress intensity factors for tension and bending are available, few solutions exist for the case of torsion, even though these components may also be subjected to torque. In this paper, the finite element method is used to compute the stress intensity factors for this geometry under tension and torsion. Shell elements are employed to compute the results for thin shells by the means of the displacement extrapolation technique. The computed results indicate that the available analytical solution for torsional loading, which is based on shallow shell theory, is nonconservative for long cracks in thin shells. Shallow shell theory is in general not applicable to long cracks, and the present work is therefore able to provide solutions for a wider range of crack lengths than what is currently available.  相似文献   

2.
For cracked structural rectangular thin-walled tubes, an exact and very simple method to determine the stress intensity factors has been proposed based on a new concept of crack surface widening energy release rate. Unlike the classical crack extension energy release rate, the crack surface widening energy release rate can be expressed by the G*-integral and elementary strength theory of materials for slender cracked structures. From present discussions, a series of new and exact solutions of stress intensity factors are derived for cracked rectangular and square tubes. The present method can also be applied to cracked polygon thin-walled tubes.  相似文献   

3.
We present simple, closed-form expressions for stress intensity factors for cracked I-beams subjected to a bending moment. The estimates are based on the elementary strength theory for cracked beams forwarded by Herrmann and co-workers, coupled with dimensional considerations and a finite element calibration. The expressions given here are valid for the case when the crack has propagated through the flange and into the web of the beam. The simple expressions are accurate to within 5% of detailed finite element calculations for the range of practical applicability. To further demonstrate the validity of the stress intensity factor expression, we measured fracture loads for cracked polymethyl methacrylate (PMMA) I-beams in four-point flexure. Using the failure loads and our expression for the stress intensity factor, we deduce the fracture toughness. The fracture toughness so-obtained results in excellent fracture correlation for the cracked I-beams.  相似文献   

4.
5.
The method of fundamental solutions is applied to the computation of stress intensity factors in linear elastic fracture mechanics. The displacements are approximated by linear combinations of the fundamental solutions of the Cauchy–Navier equations of elasticity and the leading terms for the displacement near the crack tip. Two algorithms are developed, one using a single domain and one using domain decomposition. Numerical results are given. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

6.
This paper presents an extension of a simple and convenient method proposed by Kienzler and Herrmann [An elementary theory of defective beams. Acta Mech 1986;62:37-46] to estimate the stress intensity factors of cracked beams and bars. This method is based on an elementary beam theory estimation of the strain energy release as the crack is widened into a fracture band. As an extension, the power of the simple beam theory analysis is demonstrated by application to cracked T-beams subjected to a bending moment, shear forces and a torsion. Moreover, the present work addresses the coupled bending-torsional vibration of cracked T-beams within the context of the dynamic stiffness matrix method of analysing structures.  相似文献   

7.
Cold‐working of riveted holes reduces the stress intensity factor associated with cracks that may develop at the hole boundary, by creating a compressive residual stress field. The residual stress field is determined using the finite‐element method and the reduction of the stress intensity factor for different values of the interference is evaluated with the weight function method, in the case of an infinite plate made from an elastic–perfectly plastic material, and having a hole with two symmetrical cracks. Once the weight function of the structure is known, further calculation of the stress intensity factors for different loadings such as a remote uniform stress, or a point load that simulates the action of the rivet can be performed without difficulty.  相似文献   

8.
The analysis of three‐dimensional crack problems using enriched crack tip elements is examined in this paper. It is demonstrated that the enriched finite element approach is a very effective technique for obtaining stress intensity factors for general three‐dimensional crack problems. The influence of compatibility, integration, element shape function order, and mesh refinement on solution convergence is investigated to ascertain the accuracy of the numerical results. It is shown that integration order has the greatest impact on solution accuracy. Sample results are presented for semi‐circular surface cracks and compared with previously obtained solutions available in the literature. Good agreement is obtained between the different numerical solutions, except in the small zone near the free surface where previously published results have often neglected the change in the stress singularity at the free surface. The enriched crack tip element appears to be particularly effective in this region, since boundary conditions can be easily imposed on the stress intensity factors to accurately represent the correct free surface condition. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

9.
The Wu‐Carlsson displacement‐based weight function method is extended to obtain the mode I and mode II weight functions for the edge‐ and centre‐cracked discs. Compared with Fett's direct adjustment weight functions for the edge‐cracked discs, the present weight functions are more accurate and are applicable for a wider range of crack lengths. Using the present weight functions, extensive and highly accurate mixed‐mode stress intensity factors are obtained for the cracked discs subjected to diametrically compressive forces. Assuming perfect contact and using Coulomb friction law and the present weight functions, the mode II stress intensity factors for the cracked discs with consideration of friction are obtained and widely compared with the corresponding results from finite element analyses.  相似文献   

10.
The paper presents a means of determining the non‐linear stiffness matrices from expressions for the first and second variation of the Total Potential of a thin‐walled open section finite element that lead to non‐linear stiffness equations. These non‐linear equations can be solved for moderate to large displacements. The variations of the Total Potential have been developed elsewhere by the authors, and their contribution to the various non‐linear matrices is stated herein. It is shown that the method of solution of the non‐linear stiffness matrices is problem dependent. The finite element procedure is used to study non‐linear torsion that illustrates torsional hardening, and the Newton–Raphson method is deployed for this study. However, it is shown that this solution strategy is unsuitable for the second example, namely that of the post‐buckling response of a cantilever, and a direct iteration method is described. The good agreement for both of these problems with the work of independent researchers validates the non‐linear finite element method of analysis. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

11.
Stress intensity factor for a cracked specimen under compression   总被引:1,自引:0,他引:1  
For a cracked specimen under compression, a set of complex stress functions is proposed and by using the boundary collocation method, the unknown coefficients of these complex stress functions are determined. Based on the calculation results of the boundary collocation method, the formulas of the stress intensity factor for a cracked specimen under compression are obtained, and by using these formulas, the influence of confining stress on stress intensity factor is analyzed.  相似文献   

12.
The fatigue life of cracked steel members can be greatly extended by externally attached carbon fibre reinforced plastics (CFRP), which reduces the stress intensity factors (SIFs) at the crack tip. Access to cracks is sometimes limited and the CFRP has to be attached away from the cracks. There is a lack of knowledge on SIFs for such strengthening scheme. This paper presents the effects of CFRP bond locations on the Mode I SIF of centre‐cracked tensile (CCT) steel plate. The Mode I SIF at the crack tip is calculated using the finite element (FE) models. A correction factor is introduced as a function of CFRP bond location and crack length. The FE results are compared and agree well with experimental tests conducted by the authors. By combining with another two factors (one considering CFRP mechanical properties and the other considering CFRP bond width) derived previously by the authors, SIF formulae are proposed for CFRP reinforced CCT steel plates.  相似文献   

13.
In welded components, particularly those with complex geometrical shapes, evaluating stress intensity factors is a difficult task. To effectively calculate the stress intensity factors, a weld toe magnification factor is introduced that can be derived from data obtained in a parametric study performed by finite element method (FEM). Although solutions for the weld toe magnification factor have been presented, these are applicable only to non‐load‐carrying cruciform or T‐butt joints, due possibly to the requirement of very complicated calculations. In the majority of cases for various welded joints, the currently used weld toe magnification factors do not adequately describe the behaviour of weld toe cracks. In this study, the weld toe magnification factor solutions for the three types of welded joints such as cruciform, cover plate and longitudinal stiffener joints were provided through a parametric study using three‐dimensional finite elements. The solutions were formed with exponents and fractions that have polynomial functions in terms of a/c and a/t – that is, crack depths normalised by corresponding half crack lengths and specimen thickness. The proposed weld toe magnification factors were applied to evaluate the fatigue crack propagation life considering the propagation mechanisms of multiple‐surface cracks for all welded joints. It showed good agreement within a deviation factor of two between the experimental and calculated results for the fatigue crack propagation life.  相似文献   

14.
The knowledge of the stress intensity factor (SIF) values along a crack front is essential to calculate the crack growth rate and the remaining life of a mechanical component. In the case of a rotating shaft, usually it presents disalignments, which modify the SIF data with regard to a balanced one. This paper presents the use of an artificial neural network (ANN) for estimating the SIF at the crack front in an unbalanced shaft under rotating bending, previously, a quasi‐static numerical (finite element) model, which simulates a rotating shaft, has been developed to create the training cases for the ANN. The obtained results allow to study the influence of the unbalance of rotating shafts in the crack breathing mechanism and will allow to predict the influence of this behaviour on the values of the SIF and in the propagation of cracks.  相似文献   

15.
In this paper the method of weight functions is employed to calculate the stress intensity factors for an internal circumferential crack in a thick‐walled cylinder. The pressurized cylinder is also subjected to convection cooling on the inner surface. Finite element method is used to determine an accurate weight function for the crack and a closed‐form thermal stress intensity factor with the aid of the weight function method is extracted. The influence of crack parameter and the heat transfer coefficient on the stress intensity factors are determined. Comparison of the results in the special cases with those cited in the literature and the finite element data shows that the results are in very good agreement.  相似文献   

16.
Thin‐walled beams with open cross‐section under torsion or complex load are studied based on the hypotheses of the classical theory (Vlasov). Different from previous techniques presented in the literature, the concept of a strip‐plate is introduced. This concept is used to accurately model the effect of bending induced by torsion and to define an alternate finite element called macro‐element. The macro‐elements are shown to model more accurately the thin‐walled beams under warping torsion or complex load therefore giving better results than the classical theory. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

17.
We describe the application of the dual boundary element method for the determination of stress intensity factors in plate bending problems. The loadings considered include internal pressure, and also combined bending and tension. Mixed mode stress intensity factors are evaluated by a crack surface displacement extrapolation technique and the J-integral technique. The boundary element results for the case studies considered in the paper have been compared with either analytical or finite element results and in all cases good agreement has been achieved. __________ Translated from Problemy Prochnosti, No. 5, pp. 81–93, September–October, 2007.  相似文献   

18.
Three‐dimensional (3D) opening mode stress intensity factors (SIFs) for structural steel‐welded ‘T’ details were investigated by the finite element method. A 3D shape‐dependent correction factor is proposed for semi‐elliptical surface cracks. The aspect ratio (a/c) of a semi‐elliptical crack plays a key role in the approximation of 3D‐SIF values, and in the present study, it was estimated for a 3D crack analysis. The estimated 3D‐SIF was determined through a correlation between the a/c ratio and the two‐dimensional SIF for semi‐elliptical cracks in the thickness direction adjacent to the web‐flange junction of a welded ‘T’. The resulting equation can be used to estimate the 3D‐SIF values from the two‐dimensional SIF without much ambiguity.  相似文献   

19.
An infinite quasi‐orthotropic plane with a cracked circular hole under tensile loading at infinity is studied analytically. To this end, complex variable theory of Muskhelishvili is used. In addition, to obtain analytical functions, a new conformal mapping is proposed and expanded to series expressions. Stress intensity factors (SIFs) for two unequal cracks emanating from a circular hole are obtained. To validate the analytical SIFs in a quasi‐orthotropic plane, the results are compared with FEM and the results of isotropic plane. The SIFs for small cracks in a quasi‐orthotropic and an isotropic plane are different, because of difference between stress concentrations in points which cracks emanate from the hole. However, the results of quasi‐orthotropic plane converge to isotropic plane for the large cracks. Therefore, the SIFs of the large cracks in a quasi‐orthotropic plane can be replaced by the results of the center crack with equivalent length in an isotropic plane.  相似文献   

20.
An analytical method for calculating dynamic stress intensity factors in the mixed mode (combination of opening and sliding modes) using complex functions theory is presented. The crack is in infinite medium and subjected to the plane harmonic waves. The basis of the method is grounded on solving the two‐dimensional wave equations in the frequency domain and complex plane using mapping technique. In this domain, solution of the resulting partial differential equations is found in the series of the Hankel functions with unknown coefficients. Applying the boundary conditions of the crack, these coefficients are calculated. After solving the wave equations, the stress and displacement fields, also the J‐integrals are obtained. Finally using the J‐integrals, dynamic stress intensity factors are calculated. Numerical results including the values of dynamic stress intensity factors for a crack in an infinite medium subjected to the dilatation and shear harmonic waves are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号