首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
This paper is concerned with an experimental and numerical study of the fatigue behaviour of tubular AlMgSi welded specimens subjected to biaxial loading. In‐phase torsion–bending fatigue tests under constant amplitude loading were performed in a standard servo‐hydraulic machine with a suitable gripping system. Some tests in pure rotating bending with and without steady torsion were also performed. The influence of stress ratio R and bending–torsion stress ratio were analysed. Correlation of the fatigue lives was done using the distortion energy hypothesis (DEH), based on the local stresses and strains. The applicability of the local strain approach method to the prediction of the fatigue life of the welded tubular specimens was also investigated. Static torsion has only a slight detrimental influence on fatigue strength. The DEH (von Mises criterion) based on local stresses in the weld toes was shown to satisfactorily correlate fatigue lives for in‐phase multiaxial stress–strain states. The stress–strain field intensity predictions were shown to have less scatter and are in better agreement with the experimental results than the equivalent strain energy density approach.  相似文献   

2.
A new computational methodology is proposed for fatigue life prediction of notched components subjected to variable amplitude multiaxial loading. In the proposed methodology, an estimation method of non‐proportionality factor (F) proposed by authors in the case of constant amplitude multiaxial loading is extended and applied to variable amplitude multiaxial loading by using Wang‐Brown's reversal counting approach. The pseudo stress correction method integrated with linear elastic finite element analysis is utilized to calculate the local elastic‐plastic stress and strain responses at the notch root. For whole local strain history, the plane with weight‐averaged maximum shear strain range is defined as the critical plane in this study. Based on the defined critical plane, a multiaxial fatigue damage model combined with Miner's linear cumulative damage law is used to predict fatigue life. The experimentally obtained fatigue data for 7050‐T7451 aluminium alloy notched shaft specimens under constant and variable amplitude multiaxial loadings are used to verify the proposed methodology and equivalent strain‐based methodology. The results show that the proposed methodology is superior to equivalent strain‐based methodology.  相似文献   

3.
Service conditions experienced by rubber components often involve cyclic loads which are more complex than a constant amplitude loading history. Consequently, a model is needed for relating the results of constant amplitude characterization of fatigue behaviour to the effects of variable amplitude loading signals. The issue is explored here via fatigue crack growth experiments on pure shear specimens conducted in order to evaluate the applicability of a linear crack growth model equivalent to Miner's linear damage rule. This model equates the crack growth rate for a variable amplitude signal to the sum of the constant amplitude crack growth rates associated with each individual cycle. The variable amplitude signals were selected to show the effects of R-ratio (ratio of minimum to maximum energy release rate), load level, load sequence, and dwell periods on crack growth rates. In order to distinguish the effects of strain crystallization on crack growth behaviour, two filled rubber compounds were included: one that strain crystallizes, natural rubber, and one that does not, styrene-butadiene rubber. The linear crack growth model was found to be applicable in most cases, but a dwell effect was observed that is not accounted for by the model.  相似文献   

4.
This paper is aimed at developing a statistical approach for fatigue life prediction of steel bridges with structural health monitoring data. The present approach obtains the static cumulative damage index by using the Mittag–Leffler distribution in conjunction with the statistical form of Miner's rule and investigates the influence of annual traffic increase on the evolution of the dynamic service life by a modified statistical formula of Miner's rule, which includes the relationship between the levels of stress range and the annual traffic increase rate. The proposed method is exemplified to specifically predict the static fatigue life of the Neville Island Bridge and the dynamic fatigue life of the Birmingham Bridge.  相似文献   

5.
Cumulative Damage Theories for the Prediction of Fatigue Life . Most fatigue data are determined in constant stress amplitude tests. Therefore they are not applicable directly for the prediction of fatigue life under service loads: A “cumulative damage theory” is necessary. For about 350 program test series (blocked 8 stress level tests) the cumulative damage sum Σ ni/Ni at failure is calculated. The mean value of this ratio is near 1,0 and thus agrees with Miner's rule; however the scatter is extremely high. Tests in bending give significantly lower damage sums than tests under axial loads. Furthermore about 130 random and flight by flight tests are analysed. Next, modified linear damage theories are discussed and it shows that only theories which take residual stresses into account will improve the accuracy. A relative fatigue life estimation is proposed, where one test under service conditions is the basis and Miner's rule is used as a transfer function.  相似文献   

6.
The new Swedish fighter JAS39 Gripen has a large number of primary structures made of composites. On those structures a large number of bolted joints are used which during the aircraft's service life will be subjected to spectrum fatigue loading. Consequently it is important to study the spectrum fatigue life of bolted joints. Specimens with a double-lap configuration and six bolts have been fatigue loaded at the load ratios R=−0.2 and R=−5. Specimens were also fatigue loaded with a vertical fin spectrum which had different amounts of elimination of load cycles. A linear damage rule, Miner's rule, was used to predict the spectrum fatigue life. The experimental results show that the shortest fatigue life occurs for specimens loaded at R=−1 followed by specimens loaded at R=−0.2. The longest fatigue life occurred for specimens loaded at R=−5. It was found that 50% elimination of load cycles in the spectrum can be used without affecting the fatigue life. The Miner's rule predictions appeared to overestimate the spectrum fatigue life. From bolt failure it was found that the first bolt row transfers the largest amount of load in the specimens.  相似文献   

7.
Cumulative Damage Theories for the Prediction of Fatigue Life . Most fatigue data are determined in constant stress amplitude tests. Therefore they are not applicable directly for the prediction of fatigue life under service loads: A ?cumulative damage theory”? is necessary. For about 350 program test series (blocked 8 stress level tests) the cumulative damage sum Σ ni/Ni at failure is calculated. The mean value of this ratio is near 1,0 and thus agrees with Miner's rule; however the scatter is extremely high. Tests in bending give significantly lower damage sums than tests under axial loads. Furthermore about 130 random and flight by flight tests are analysed. Next, modified linear damage theories are discussed and it shows that only theories which take residual stresses into account will improve the accuracy. A relative fatigue life estimation is proposed, where one test under service conditions is the basis and Miner's rule is used as a transfer function.  相似文献   

8.
Abstract: In this investigation, an efficient fatigue life computation method under variable amplitude loading of structural components has been proposed. Attention in this study is focused on total fatigue life estimation of aircraft structural components. Flat specimens with central hole made of quenched and tempered steel 13H11N2V2MF were tested as representatives of different structural components. Total fatigue life of these specimens, defined as sum of fatigue crack initiation and crack growth life, was experimentally determined. Specimens were tested by blocks of positive variable amplitude loading. Crack initiation life was computed using theory of low‐cycle fatigue (LCF) properties. Cyclic stress–strain curve, Masing’s curve and approximate Sonsino’s curve were used for determining stress–strain response at critical point of considered specimens. Computation of crack initiation life was realised using Palmgren–Miner’s linear rule of damage accumulation, applied on Morrow’s curves of LCF properties. Crack growth life was predicted using strain energy density method. In this method, the same LCF properties were used for crack initiation life and for crack growth life computations also. Computation results are compared with own experimentally obtained results.  相似文献   

9.
Based on Wang and Brown's reversal counting method, a new approach to the determination of the critical plane is proposed by the defined plane with a weight‐averaged maximum shear strain range under multiaxial variable amplitude loading. According to the determined critical plane, a detailed procedure of multiaxial fatigue life prediction is introduced to predict lives in the low‐cycle multiaxial fatigue regime. The proposed approach is verified by two multiaxial fatigue damage models and Miner's linear cumulative damage law. The results showed that the proposed approach can effectively predict the orientation of the failure plane under multiaxial variable amplitude loading and give a satisfactory life prediction.  相似文献   

10.
This study focused on local strain behaviour near the slit edge of spot‐welded joints, where the fatigue crack initiated, and investigated methods of evaluating cumulative fatigue damage. A method of evaluating local strain amplitude by following modified Goodman's law gave almost the same result as an evaluation approach based on the external force and provided reasonable result on general strength design. An approach based on Smith–Watson–Topper's equation was easy to evaluate cumulative fatigue damage compared with the method based on modified Goodman's law and gave a good agreement with a criterion of the modified Miner's rule.  相似文献   

11.
A path‐dependent cycle counting method is proposed by applying the distance formula between two points on the tension‐shear equivalent strain plane for the identified half‐cycles first. The Shang–Wang multiaxial fatigue damage model for an identified half‐cycle and Miner's linear accumulation damage rule are used to calculate cumulative fatigue damage. Therefore, a multiaxial fatigue life prediction procedure is presented to predict conveniently fatigue life under a given tension and torsion random loading time history. The proposed method is evaluated by experimental data from tests on cylindrical thin‐walled tubes specimens of En15R steel subjected to combined tension/torsion random loading, and the prediction results of the proposed method are compared with those of the Wang–Brown method. The results showed that both methods provided satisfactory prediction.  相似文献   

12.
Cumulative fatigue damage and life prediction of elastomeric components   总被引:1,自引:0,他引:1  
Elastomeric components are widely used in many applications due to their good damping and energy absorption characteristics. The type of loading normally encountered by these components in service is variable amplitude cyclic loading. Therefore, fatigue failure is a major consideration in their design. In this work capabilities of Rainflow cycle counting procedure, maximum principal strain as a damage criterion, and Miner's linear cumulative damage rule are evaluated with both specimen and component tests. An automotive cradle mount is used as an illustrative component. Comparison of predicted and experimental fatigue lives in both specimen and cradle mount variable amplitude load tests indicate satisfactory predictions in both cases.  相似文献   

13.
A test rig for simultaneous testing of up to 88 compression springs under constant as well as variable amplitude loading is presented in this paper. The test rig utilizes a servo‐hydraulic testing machine. The results of long‐term fatigue tests of compression springs under constant and variable amplitude loading up to 5 ? 108 and 1.4 ? 107 cycles are presented. Experimental Woehler‐ and Gassner‐curves are obtained using the maximum likelihood method. Theoretical Gassner‐curves are generated using Miner's rule and experimental Woehler‐curves. The theoretical Gassner‐curves are compared to the experimental ones. The results of the constant amplitude loading tests are compared to literature data. The possibility to increase the testing frequency in variable amplitude loading tests is discussed. Thereto, the comparability of results from fatigue tests of material specimens using torsional ultrasonic fatigue testing equipment to results from fatigue tests on compression springs is addressed.  相似文献   

14.
Prediction on Fatigue Life of Notched Specimens under Cyclic Bending Loading Pulsating 3P‐bending fatigue tests are conducted on edge‐notched specimens of AA7075. Measurements of electrical potential drop across notches were used to determine the number of cycles up to crack initiation. Cyclic material data determined from strain–controlled constant amplitude loading are use in FE‐analyses to the determination time functions of the local stresses and strains at the notch root using non‐linear material model according to Chaboche and Lemaitre. Using these FE computations, the fatigue life is predicted by the equivalent strain approach of the “ASME Boiler and Pressure Vessel Code” and compared with the results of the plastic strain energy approach. It is found that both approaches lead to relatively good predictions.  相似文献   

15.
According to the characteristic of the local behavior of fatigue damage, on the basis of stress field intensity approach, a theory of local stress–strain field intensity for fatigue damage at the notch is developed in this paper, which can take account of the effects of the local stress–strain gradient on fatigue damage at the notch. In order to calculate the local stress–strain field intensity parameters, an incremental elastic-plastic finite element analysis under random cyclic loading is used to determine the local stress–strain response. A local stress–strain field intensity approach to fatigue life prediction is proposed by means of elastic-plastic finite element method for notched specimens. This approach is used to predict fatigue crack initiation life, and good correlation was observed with U-shape notched specimens for normalized 45 steel.  相似文献   

16.
Load controlled fatigue tests were performed up to 107 cycles on flat notched specimens (Kt = 2.5) under constant amplitude and variable amplitude loadings with and without periodical overloads. Two materials are studied: a ferritic‐bainitic steel and a cast aluminium alloy. These materials have a very different cyclic behaviour: the steel exhibits cyclic strain softening whereas the Al alloy shows cyclic strain hardening. The fatigue tests show that, for the steel, periodical overload applications reduce significantly the fatigue life for fully reversed load ratio (Rσ = –1), while they have no influence under pulsating loading (Rσ = 0). For the Al alloy overloads have an effect (fatigue life decreasing) only for variable amplitude loadings. The detrimental effect of overloads on the steel is due to ratcheting at the notch root which evolution is overload's dependent.  相似文献   

17.
The present paper investigates the application of the stochastic approach when the commonly adopted Miner's linear damage rule is implemented, both in its traditional and modified forms to include the presence of a random stress threshold (random fatigue limit), below which the rate of damage accumulation is reduced. Main steps are provided to obtain the simulated distribution of the accumulated damage under variable amplitude loading. When the stochastic approach is applied in the presence of a random fatigue limit, an additional correlation structure, which takes into account the fatigue limit value, must be introduced in the analysis. If the number of cycles to failure under constant amplitude loading is Weibull (Log‐Normal) distributed, then the corresponding accumulated damage is Fréchet (Log‐Normal) distributed. The effects of the correlation structure on reliability prediction under variable amplitude loading are also investigated. To this aim, several experimental datasets are taken from the literature, covering various metallic materials and variable amplitude block sequences. The results show that the choice of the damage accumulation model is a key factor to value the improvement in the accuracy of reliability predictions introduced by the stochastic approach. Comparison of the predicted number of cycles to failure with experimental data shows that larger errors are non‐conservative, regardless of the adopted correlation structure. When the analysis is limited to reliability levels above 80%, for these large non‐conservative errors, it is the quantile approach to be closer to actual experimental data, thus limiting the overestimation of component's life. For the experimental datasets considered in the paper, adoption of a stochastic approach would improve the accuracy of Miner's predictions in 10% of cases.  相似文献   

18.
The constant/variable amplitude loading fatigue test with interior inclusion-fine granular area-fisheye induced failure under R=0 were carried out on carburized Cr−Ni steel. The results showed that the fatigue life under variable amplitude loading is longer than that under constant amplitude loading in very-high-cycle fatigue regime under same maximum stress level, and the surface morphology of fine granular area under variable amplitude loading is coarser than that under constant amplitude loading under same order of magnitude of fatigue life. Simultaneously, it can be determined that the formation micro-mechanism of fine granular area is caused by the continuous deboning due to stress concentration around interior micro-defects. Furthermore, the life prediction model based on double nonlinear fatigue damage, which considers the coupling effect of local equivalent stress (surface residual stress and local stress concentration effect), loading sequence, failure mechanism and nonlinear characteristics of fatigue damage under constant/variable amplitude loading is established, and predicted life has good accuracy within the factor-of-three lines.  相似文献   

19.
In order to study the use of a local approach to predict crack‐initiation life on notches in mechanical components under multiaxial fatigue conditions, the study of the local cyclic elasto‐plastic behaviour and the selection of an appropriate multiaxial fatigue model are essential steps in fatigue‐life prediction. The evolution of stress–strain fields from the initial state to the stabilized state depends on the material type, loading amplitude and loading paths. A series of biaxial tension–compression tests with static or cyclic torsion were carried out on a biaxial servo‐hydraulic testing machine. Specimens were made of an alloy steel 42CrMo4 quenched and tempered. The shear stress relaxations of the cyclic tension–compression with a steady torsion angle were observed for various loading levels. Finite element analyses were used to simulate the cyclic behaviour and good agreement was found. Based on the local stabilized cyclic elastic–plastic stress–strain responses, the strain‐based multiaxial fatigue damage parameters were applied and correlated with the experimentally obtained lives. As a comparison, a stress‐invariant‐based approach with the minimum circumscribed ellipse (MCE) approach for evaluating the effective shear stress amplitude was also applied for fatigue life prediction. The comparison showed that both the equivalent strain range and the stress‐invariant parameter with non‐proportional factors correlated well with the experimental results obtained in this study.  相似文献   

20.
Abstract: The fatigue damage accumulation behaviour of the P355NL1 steel is characterised using block loading fatigue tests. First, the constant amplitude low‐cycle fatigue behaviour of the P355NL1 steel is evaluated through strain‐controlled fatigue tests of smooth specimens. Both fatigue and cyclic elastoplastic behaviours are analysed. Then, block loading is applied to identify the key features of the fatigue damage accumulation phenomena for the P355NL1 steel. The block loading is composed of two distinct low‐cycle constant amplitude strain‐controlled blocks. The first block is applied for a predefined number of loading cycles, being followed by a second block which is applied until failure. The block loading illustrates that fatigue damage evolves nonlinearly with the number of load cycles as a function of the strain amplitude. These observations suggest a nonlinear damage accumulation rule with load sequence effects. The linear Palmgren–Miner's rule used extensively in design is not verified for the P355NL1 steel. Finally, using the generated experimental data, the cyclic elastoplastic behaviour of the P355NL1 steel is modelled using a continuum plasticity model with nonlinear kinematic hardening, available in the commercial finite element code ansys ®.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号