首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
利用箔-纤维-箔(FFF)法结合真空热压(VHP)技术制备新型的Cf增强Ti/Al基层状复合材料。借助扫描电镜(SEM),能谱分析(EDS),X射线物衍射物相分析测试(XRD),弯曲实验,压缩实验等对不同热压工艺参数下材料的组织及性能进行研究。结果表明,最佳热压工艺为700℃-30MPa-1h,材料弯曲强度可达469MPa,抗压强度可达324MPa。新型Cf增强Ti/Al基层状复合材料结构为韧-脆相交替的叠层,该结构可有效阻碍裂纹扩展并延长其扩展路径,吸收大量的断裂能,以此提高材料的性能。在Ti/Al界面处生成Al3Ti和Ti5Si3强化相;在Al/Cf界面处形成了Al4C3和SiC相。Si元素促进Ti、Al结合及强化相Ti5Si3的析出,并提高Al、C润湿性。  相似文献   

2.
SiC纤维增强钛基复合材料的界面反应   总被引:1,自引:0,他引:1  
张国兴  康强  李阁平  石南林  李东 《金属学报》2002,38(Z1):474-476
采用真空热压工艺制备了界面结合良好的SiC纤维增强钛基复合材料,并对其界面和SiC纤维进行了透射电镜分析.结果表明,针状β-SiC晶粒沿纤维径向生长,呈辐射状分布;在复合材料的热压制备过程中,Si和C由SiC纤维向钛基体扩散,Ti则向SiC纤维扩散,形成了TiC和Ti5Si3等产物.  相似文献   

3.
本文综述了利用纯Ti箔和铝基复合材料(Al-MMC)箔反应退火合成Ti Al基复合材料板材的研究进展。该方法包括对多层Ti/Al-MMC复合板的变形和反应退火热处理,在避免对脆性TiAl金属间化合物直接变形的同时,制备出具有较高强度和延伸率的Ti Al基复合材料板材。对合成过程中Ti Al基复合材料板材的组织演化和形成机理进行了总结,重点阐明了铝基复合材料与Ti的两步热处理的反应机理,提出了消除Kirkendall孔洞的工艺方法,为大尺寸TiAl基复合材料板材的制备提供了可行的工艺方案。  相似文献   

4.
通过箔-纤维-箔法制备了Si C纤维增强TB8复合材料,采用光学电子显微镜(OM)、扫描电镜(SEM)和电子探针(EPMA)对复合材料的微观组织进行表征与分析,研究了真空热压复  相似文献   

5.
采用箔-纤维-箔法制备SiC_f/Ti6Al4V/Cu复合材料,研究Ti6Al4V在连续SiC纤维增强Cu基复合材料中作界面改性涂层时的界面反应结合特征.利用光学显微镜、扫描电镜和能谱仪分析复合材料显微组织、断口形貌以及SiC_f/Ti6Al4V界面和Ti6A14WCu界面的反应扩散特征.结果表明:该复合材料的抗拉强度并没有显著提高;SiC_f/Ti6Al4V界面反应非常微弱;而Ti6Al4V/Cu界面反应非常明显,主要是Ti原子与Cu原子之间的反应,反应层厚度约为20 μm;反应产物主要呈4层分布,分别为CuTi_2、CuTi、Cu_4Ti_3和Cu_4Ti.  相似文献   

6.
采用真空蒸镀法对Si C颗粒(SiC_p)表面进行镀Ti改性改善SiC_p/Al复合材料界面结合,采用热压、挤压和热处理等方法制备镀Ti后SiC_p和原始SiC_p增强的Al 2519基复合材料。通过扫描电镜(SEM)和能谱仪(EDS)分析Ti镀层对复合材料组织与性能的影响。结果表明,致密沉积的Ti镀层与SiC_p反应,在界面处形成Ti C和Ti5Si3相;与用原始SiC_p增强的复合材料相比,用Ti镀覆SiC_p增强的复合材料表现出均匀且致密的显微组织且复合材料的相对密度和力学性能得到显著改善。体积分数为15%时,镀Ti后SiC_p增强Al2519复合材料的硬度、断裂应变和拉伸强度达到最优,分别为HB 138.5、4.02%和455 MPa。  相似文献   

7.
采用粉末冶金法在普通空气加热炉中烧结制备了不同 Si C含量的 Si Cp/ Al复合材料 ,并对其组织的均匀性作了研究。结果表明 ,对 Si Cp/ Al复合材料进行二次热压变形 ,可改善复合材料组织的不均匀性 ,使基体晶粒细化 ,Si C颗粒分布均匀 ,致密度提高。通过对不同热压工艺进行比较 ,发现 40 0℃× 190 k N× 10 min热压变形工艺对改善 Si Cp/ Al复合材料组织的不均匀性效果更好。  相似文献   

8.
SiC连续纤维增强钛基复合材料研究   总被引:8,自引:0,他引:8  
采用SCS-6 SiC连续纤维和箔-纤维-箔法制备SiC长纤维增强的TC4和Ti40基复合材料,研究复合材料的微观组织结构,结果表明:采用925℃的固化工艺制备长纤维SiC/TC4 和SiC/Ti40复合材料是合适的;SiC/TC4和SiC/Ti40复合材料的界面反应层厚度分别为0.8μm和0.6μm,基体与纤维的界面结合良好,在SiC/Ti40复合材料两纤维间区域存在TiC析出物。  相似文献   

9.
以1060Al箔、HL403铝合金粉和M40单向碳纤维布为原材料,纤维体积分数为22.80%,采用真空热压法制备了C_f/Al叠层复合材料。通过正交试验法研究了热压温度、热压时间和热压压力等工艺参数对复合材料组织和力学性能的影响。结果表明,热压时间对复合材料的抗拉强度影响最为显著,热压温度对复合材料的致密度影响最为显著。1060Al箔与M40单向碳纤维布之间加入HL403铝合金粉,降低了热压温度,减缓了界面反应,同时生成的Al_2Cu相抑制了Al_4C_3脆性相的生成,提高了复合材料的力学性能。当热压温度为510℃,热压时间为180 min,热压压力为15 MPa时,C_f/Al叠层复合材料的基体与纤维结合较好,铝基体层与纤维增强层交替排布,纤维分布均匀。C_f/Al叠层复合材料断裂时有大量纤维被拔出,拉伸断口表现为铝基体层的韧性断裂与纤维增强层的脆性断裂。C_f/Al叠层复合材料的密度为2.492 g/cm~3,致密度为99.80%,抗拉强度为254.75 MPa,抗弯强度为334.97 MPa。  相似文献   

10.
利用箔-纤维-箔法和热压烧结成功制备出Mof/Ti48Al复合材料,并分析了Mo纤维对TiAl合金显微组织和力学性能的影响。结果表明,通过635 ℃,3 MPa,10 h+680 ℃,3 MPa,4 h的两步低温热压,箔材中的Al完全反应完,TiAl箔叠层材料形成致密的Ti/TiAl3板材,合金致密基本无孔洞。再通过1200 ℃,36 h的高温退火,Ti与TiAl3在高温下继续反应,形成γ-TiAl、α-Ti3Al相。高温退火后的钼纤维与基体合金发生了扩散反应,形成了扩散区域,此区域内主要相组成为TiMo、AlMo3,钼纤维与基体合金通过扩散紧密结合在一起,界面未发现孔洞和因应力形成的裂纹。相比于未添加钼纤维的合金,添加10vol%钼纤维的复合材料抗弯性能有明显的提高,钼纤维在合金中起到了强韧化作用。  相似文献   

11.
王成  施长岗 《热加工工艺》2015,(4):123-125,129
研究了不同质量分数Si C颗粒增强铝基复合材料的显微结构和力学性能,采用热压烧结和热挤压工艺成功制备出Si C颗粒增强铝基复合材料,通过相对致密度、XRD、FESEM和拉伸力学性能测试等手段,探究了不同质量分数的Si C颗粒和热挤压工艺对铝基复合材料显微结构、抗拉强度以及断裂方式的影响。  相似文献   

12.
用热压逐层叠置的TiWSi合金箔与Al箔的方法制备了Ti-46Al-4W-Si的合金板材。热压工艺为645℃/15h+900℃/30h+1370℃/2h。利用扫描电子显微镜(SEM)和X射线衍射仪(XRD)对板材的组织和成分进行了分析。板材呈近全片层组织。由于Kirkenall效应以及压力不足等原因,基体中有孔洞产生。基体中有Ti5Si3以及B2相析出,这与原始钛合金箔材的组织有关。  相似文献   

13.
采用箔-纤维-箔(FFF)法分别制备无涂层、C涂层和Cu/Mo双涂层改性的SiCf/Ti6Al4V复合材料,对制备态复合材料的力学性能和界面微观组织进行对比分析,进一步研究不同真空热暴露处理对Cu/Mo双涂层改性复合材料的界面微区的影响规律。结果表明,制备态下Cu/Mo涂层比C涂层较好地改善了复合材料的界面组织和性能,且对基体和纤维中元素扩散均具有一定的阻挡作用;求得900℃下SiCf/Cu/Mo/Ti6Al4V界面反应的生长动力学公式为H=1.380t1/2+5.397。  相似文献   

14.
利用纤维涂层法(FMC)、结合热压工艺制备了SiC纤维增强Ti55基复合材料(SiCf/Ti55).主要研究复合材料在经不同条件真空热暴露处理后,其反应产物相形成的反应序列以及界面反应动力学.结果表明,仅C、Si和Ti等元素参与了界面反应.在1000 ℃热暴露时,SiCf/Ti55复合材料界面反应产物序列为SiC | Ti3SiC2 | Ti5Si3+TiC | TiC | Ti55.但是,在低温热暴露的复合材料中不存在Ti3SiC2相.SiCf/Ti55复合材料界面反应产物的生长受扩散控制且遵循抛物线生长规律,其生长激活能Qk及指数系数k0分别为198.16 kJ·mol-1,1.79(10-3 m·s-1/2.相比SiCf/Ti复合材料和SiCf/Ti2AlNb复合材料,SiCf/Ti55复合材料拥有一个高稳定性的界面.然而,相比SiCf/Ti600复合材料和SCS-6 SiCf/ super а2复合材料,SiCf/Ti55复合材料中的纤维与基体更容易发生反应,且界面层更容易生长.  相似文献   

15.
采用箔-纤维-箔法制备了C/Mo双涂层界面改性Si C纤维增强γ-TiAl基复合材料(SiC/C/Mo/γ-TiAl),并研究其界面改性效果。为了对比研究,在相同工艺下制备了SiC/C/γ-TiAl复合材料。对两种复合材料在800°C和900°C下进行了不同时间的真空热暴露处理,用以研究界面区域的热稳定性。采用扫描电子显微镜和能谱仪分析了复合材料界面的显微组织。结果表明,尽管增加了Mo涂层,但是SiC/C/Mo/γ-TiAl复合材料与SiC/C/γ-TiAl复合材料的界面反应产物相一致,均为介于涂层和基体之间的TiC/Ti2AlC。但是,在900°C及其以下温度,C/Mo双涂层比C单涂层能更好地阻碍界面反应。此外,900°C,200 h热暴露后,在Ti2AlC和基体之间发现了一层新的界面反应产物,该产物富V,与B2相的化学成分接近。  相似文献   

16.
将连续玄武岩纤维(continuous basalt fiber,CBF)二维编织布与Al-12Si合金箔交替叠层堆垛成三明治结构,再利用真空压力浸渗技术成功制备出高体积分数(65%)的连续玄武岩纤维增强铝基(CBF/Al)层状复合材料。研究了浸渗工艺对复合材料微观组织演变的影响规律,阐明了CBF/Al复合材料的层状结构形成机理,并评价了其力学性能。研究表明:在温度为660℃、压力为10 MPa条件下浸渗10 min可以获得全致密的CBF/Al复合材料,其微观组织呈现独特的层状结构,即玄武岩纤维在铝合金基体中呈现垂直交叉层状分布特征,玄武岩纤维与铝合金基体未发生明显的化学反应,且由于玄武岩纤维与铝合金基体之间发生了元素(如Al、Si等)互扩散而形成了良好的冶金结合界面。纤维非理想排布方式而导致的有效承载能力下降以及高温下玄武岩纤维断裂强度降低是CBF/Al层状复合材料未达到理想力学性能的关键因素。  相似文献   

17.
针对目前航空航天材料结构轻量化的要求,以连续SiC纤维、Ti箔和Ti_2AlNb箔为原材料,基于真空热压技术,采用Foil-Fiber-Foil法,通过优化制备工艺,获得SiC_f/Ti/Ti_2AlNb叠层复合材料。利用扫描电镜和能谱分析仪对制备的复合材料界面微观组织进行分析,通过密度测试和拉伸试验计算材料的比强度和比刚度。结果表明,在920℃、40 MPa下保温保压1 h,可获得理想的SiC_f/Ti/Ti_2AlNb叠层复合材料,SiC纤维排布均匀,Ti/Ti_2AlNb界面平直。其中,SiC/Ti界面为0. 8μm的TiC,而Ti/Ti2AlNb界面为α+β双相组织和富B2相,均形成良好的冶金结合,有利于载荷传递,保证材料性能。与Ti/Ti_2AlNb相比,制备的SiC_f/Ti/Ti_2AlNb叠层复合材料的比强度和比刚度分别提高了约16%和28%,实现了材料结构的轻量化。  相似文献   

18.
利用纤维涂层法和真空热压工艺制备SiC纤维增强γ-TiAl金属间化合物(Ti-43Al-9V)复合材料,采用扫描电镜(SEM)、能谱(EDS)、X射线衍射(XRD)仪等研究复合材料的界面反应产物和界面反应产物的生长动力学。结果发现,SiCf/Ti-43Al-9V复合材料的界面反应生成了TiC、Ti2AlC和Ti5Si3,分三层分布。从SiC纤维到Ti-43Al-9V基体,界面反应产物序列为:TiC/Ti2AlC/Ti5Si3+Ti2AlC(颗粒)。界面反应产物的生长受扩散控制并遵循抛物线生长规律,其生长激活能Q和指前因子k0分别为190kJ/mol和2.5×10-5m.s-1/2。与其它Ti合金基的复合材料相比,γ-TiAl基复合材料的界面热稳定性更好。  相似文献   

19.
《塑性工程学报》2015,(3):111-115
以TB8、SiC纤维为原材料,采用箔-纤维-箔法结合热等静压致密化技术制备SiCf/TB8复合材料,观察分析其微观组织形貌和元素扩散规律,并对界面反应进行热力学和动力学分析。结果表明,采用箔-纤维-箔法结合/热等静压工艺制备SiCf/TB8复合材料,可缩短工艺流程,节约成本。热等静压参数为800℃/120MPa/2h时,制备的SiCf/TB8基复合材料的界面反应产物为TiC和Ti5Si3,纤维分布均匀,基体TB8保持β相,基体变形能力较高,扩散连接效果良好,界面反应层生长动力学方程为δ=2.25×10-6exp(-315.22×103/RT)t1/2。  相似文献   

20.
采用热压扩散法制备了层压编织Cf/Al复合材料。研究了热压温度、热压压力、热压时间等工艺参数对复合材料成形效果和致密度的影响,优化了成形工艺参数,并分析了最优工艺参数下复合材料的微观组织和界面反应。结果表明,热压温度对复合材料致密度影响最为显著。热压扩散法制备层压编织Cf/Al复合材料的最优工艺参数:热压温度为640℃、热压时间为50min、压力为15 MPa。该工艺参数下复合材料的致密度为98.5%,界面反应产物Al4C3含量约为3.6%,复合材料组织中碳纤维与铝基体结合良好,铝基体与碳纤维形成的界面为粗糙界面,界面处形成少量的杆状Al4C3。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号