共查询到20条相似文献,搜索用时 15 毫秒
1.
Sleep stage classification can provide important information regarding neonatal brain development and maturation. Visual annotation, using polysomnography (PSG), is considered as a gold standard for neonatal sleep stage classification. However, visual annotation is time consuming and needs professional neurologists. For this reason, an internet of things and ensemble-based automatic sleep stage classification has been proposed in this study. 12 EEG features, from 9 bipolar channels, were used to train and test the base classifiers including convolutional neural network, support vector machine, and multilayer perceptron. Bagging and stacking ensembles are then used to combine the outputs for final classification. The proposed algorithm can reach a mean kappa of 0.73 and 0.66 for 2-stage and 3-stage (wake, active sleep, and quiet sleep) classification, respectively. The proposed network works as a semi-real time application because a smoothing filter is used to hold the sleep stage for 3 min. The high-performance parameters and its ability to work in semi real-time makes it a promising candidate for use in hospitalized newborn infants. 相似文献
2.
Umair Muneer Butt Hadiqa Aman Ullah Sukumar Letchmunan Iqra Tariq Fadratul Hafinaz Hassan Tieng Wei Koh 《计算机、材料和连续体(英文)》2023,74(3):5017-5033
Human Activity Recognition (HAR) is an active research area due to its applications in pervasive computing, human-computer interaction, artificial intelligence, health care, and social sciences. Moreover, dynamic environments and anthropometric differences between individuals make it harder to recognize actions. This study focused on human activity in video sequences acquired with an RGB camera because of its vast range of real-world applications. It uses two-stream ConvNet to extract spatial and temporal information and proposes a fine-tuned deep neural network. Moreover, the transfer learning paradigm is adopted to extract varied and fixed frames while reusing object identification information. Six state-of-the-art pre-trained models are exploited to find the best model for spatial feature extraction. For temporal sequence, this study uses dense optical flow following the two-stream ConvNet and Bidirectional Long Short Term Memory (BiLSTM) to capture long-term dependencies. Two state-of-the-art datasets, UCF101 and HMDB51, are used for evaluation purposes. In addition, seven state-of-the-art optimizers are used to fine-tune the proposed network parameters. Furthermore, this study utilizes an ensemble mechanism to aggregate spatial-temporal features using a four-stream Convolutional Neural Network (CNN), where two streams use RGB data. In contrast, the other uses optical flow images. Finally, the proposed ensemble approach using max hard voting outperforms state-of-the-art methods with 96.30% and 90.07% accuracies on the UCF101 and HMDB51 datasets. 相似文献
3.
Yong Luo Xiaojie Li Chao Luo Feng Wang Xi Wu Imran Mumtaz Cheng Yi 《计算机、材料和连续体(英文)》2020,65(2):1771-1780
Tissue segmentation is a fundamental and important task in nasopharyngeal
images analysis. However, it is a challenging task to accurately and quickly segment
various tissues in the nasopharynx region due to the small difference in gray value
between tissues in the nasopharyngeal image and the complexity of the tissue structure.
In this paper, we propose a novel tissue segmentation approach based on a two-stage
learning framework and U-Net. In the proposed methodology, the network consists of
two segmentation modules. The first module performs rough segmentation and the
second module performs accurate segmentation. Considering the training time and the
limitation of computing resources, the structure of the second module is simpler and the
number of network layers is less. In addition, our segmentation module is based on U-Net
and incorporates a skip structure, which can make full use of the original features of the
data and avoid feature loss. We evaluated our proposed method on the nasopharyngeal
dataset provided by West China Hospital of Sichuan University. The experimental results
show that the proposed method is superior to many standard segmentation structures and
the recently proposed nasopharyngeal tissue segmentation method, and can be easily
generalized across different tissue types in various organs. 相似文献
4.
Amina Bibi Muhamamd Attique Khan Muhammad Younus Javed Usman Tariq Byeong-Gwon Kang Yunyoung Nam Reham R. Mostafa Rasha H. Sakr 《计算机、材料和连续体(英文)》2022,71(2):2477-2495
Background: In medical image analysis, the diagnosis of skin lesions remains a challenging task. Skin lesion is a common type of skin cancer that exists worldwide. Dermoscopy is one of the latest technologies used for the diagnosis of skin cancer. Challenges: Many computerized methods have been introduced in the literature to classify skin cancers. However, challenges remain such as imbalanced datasets, low contrast lesions, and the extraction of irrelevant or redundant features. Proposed Work: In this study, a new technique is proposed based on the conventional and deep learning framework. The proposed framework consists of two major tasks: lesion segmentation and classification. In the lesion segmentation task, contrast is initially improved by the fusion of two filtering techniques and then performed a color transformation to color lesion area color discrimination. Subsequently, the best channel is selected and the lesion map is computed, which is further converted into a binary form using a thresholding function. In the lesion classification task, two pre-trained CNN models were modified and trained using transfer learning. Deep features were extracted from both models and fused using canonical correlation analysis. During the fusion process, a few redundant features were also added, lowering classification accuracy. A new technique called maximum entropy score-based selection (MESbS) is proposed as a solution to this issue. The features selected through this approach are fed into a cubic support vector machine (C-SVM) for the final classification. Results: The experimental process was conducted on two datasets: ISIC 2017 and HAM10000. The ISIC 2017 dataset was used for the lesion segmentation task, whereas the HAM10000 dataset was used for the classification task. The achieved accuracy for both datasets was 95.6% and 96.7%, respectively, which was higher than the existing techniques. 相似文献
5.
基于自适应前景分割及粒子滤波的人体运动跟踪 总被引:2,自引:0,他引:2
提出了在图像序列中用自适应前景分割及粒子滤波对人体的3-D运动轨迹进行跟踪的方法.首先建立了像素点的高斯模型,并结合图像帧间的差分信息以及灰度分布的先验概率等因素完成了图像中人体的自适应分割.根据所得到的分割结果建立了透视投影下的运动平面跟踪模型.根据投影过程的非线性以及图像中噪声分布的未知性,提出了粒子滤波的跟踪方法,并最终得到了人体运动平面的3-D轨迹.实际人体运动图像序列的实验证明,本文方法能有效地跟踪人体运动的3-D轨迹,并反映出在此跟踪问题上粒子滤波比传统的扩展卡尔曼滤波更具优势. 相似文献
6.
Daniel Sierra-Sosa Sebastian Patino-Barrientos Begonya Garcia-Zapirain Cristian Castillo-Olea Adel Elmaghraby 《计算机、材料和连续体(英文)》2021,67(2):1629-1644
As colon cancer is among the top causes of death, there is a growing interest in developing improved techniques for the early detection of colon polyps. Given the close relation between colon polyps and colon cancer, their detection helps avoid cancer cases. The increment in the availability of colorectal screening tests and the number of colonoscopies have increased the burden on the medical personnel. In this article, the application of deep learning techniques for the detection and segmentation of colon polyps in colonoscopies is presented. Four techniques were implemented and evaluated: Mask-RCNN, PANet, Cascade R-CNN and Hybrid Task Cascade (HTC). These were trained and tested using CVC-Colon database, ETIS-LARIB Polyp, and a proprietary dataset. Three experiments were conducted to assess the techniques performance: 1) Training and testing using each database independently, 2) Mergingd the databases and testing on each database independently using a merged test set, and 3) Training on each dataset and testing on the merged test set. In our experiments, PANet architecture has the best performance in Polyp detection, and HTC was the most accurate to segment them. This approach allows us to employ Deep Learning techniques to assist healthcare professionals in the medical diagnosis for colon cancer. It is anticipated that this approach can be part of a framework for a semi-automated polyp detection in colonoscopies. 相似文献
7.
8.
Pongsakorn Tatongjai Tossapon Boongoen Natthakan Iam-On Nitin Naik Longzhi Yang 《计算机、材料和连续体(英文)》2023,74(2):2479-2490
As more business transactions and information services have been implemented via communication networks, both personal and organization assets encounter a higher risk of attacks. To safeguard these, a perimeter defence like NIDS (network-based intrusion detection system) can be effective for known intrusions. There has been a great deal of attention within the joint community of security and data science to improve machine-learning based NIDS such that it becomes more accurate for adversarial attacks, where obfuscation techniques are applied to disguise patterns of intrusive traffics. The current research focuses on non-payload connections at the TCP (transmission control protocol) stack level that is applicable to different network applications. In contrary to the wrapper method introduced with the benchmark dataset, three new filter models are proposed to transform the feature space without knowledge of class labels. These ECT (ensemble clustering based transformation) techniques, i.e., ECT-Subspace, ECT-Noise and ECT-Combined, are developed using the concept of ensemble clustering and three different ensemble generation strategies, i.e., random feature subspace, feature noise injection and their combinations. Based on the empirical study with published dataset and four classification algorithms, new models usually outperform that original wrapper and other filter alternatives found in the literature. This is similarly summarized from the first experiment with basic classification of legitimate and direct attacks, and the second that focuses on recognizing obfuscated intrusions. In addition, analysis of algorithmic parameters, i.e., ensemble size and level of noise, is provided as a guideline for a practical use. 相似文献
9.
Fan Yang Jie Xu Haoliang Wei Meng Ye Mingzhu Xu Qiuru Fu Lingfei Ren Zhengwen Huang 《计算机、材料和连续体(英文)》2022,71(2):2963-2980
Zanthoxylum bungeanum Maxim, generally called prickly ash, is widely grown in China. Zanthoxylum rust is the main disease affecting the growth and quality of Zanthoxylum. Traditional method for recognizing the degree of infection of Zanthoxylum rust mainly rely on manual experience. Due to the complex colors and shapes of rust areas, the accuracy of manual recognition is low and difficult to be quantified. In recent years, the application of artificial intelligence technology in the agricultural field has gradually increased. In this paper, based on the DeepLabV2 model, we proposed a Zanthoxylum rust image segmentation model based on the FASPP module and enhanced features of rust areas. This paper constructed a fine-grained Zanthoxylum rust image dataset. In this dataset, the Zanthoxylum rust image was segmented and labeled according to leaves, spore piles, and brown lesions. The experimental results showed that the Zanthoxylum rust image segmentation method proposed in this paper was effective. The segmentation accuracy rates of leaves, spore piles and brown lesions reached 99.66%, 85.16% and 82.47% respectively. MPA reached 91.80%, and MIoU reached 84.99%. At the same time, the proposed image segmentation model also had good efficiency, which can process 22 images per minute. This article provides an intelligent method for efficiently and accurately recognizing the degree of infection of Zanthoxylum rust. 相似文献
10.
R. D. Pubudu L. Indrasiri Ernesto Lee Vaibhav Rupapara Furqan Rustam Imran Ashraf 《计算机、材料和连续体(英文)》2022,71(1):489-515
Malicious traffic detection over the internet is one of the challenging areas for researchers to protect network infrastructures from any malicious activity. Several shortcomings of a network system can be leveraged by an attacker to get unauthorized access through malicious traffic. Safeguard from such attacks requires an efficient automatic system that can detect malicious traffic timely and avoid system damage. Currently, many automated systems can detect malicious activity, however, the efficacy and accuracy need further improvement to detect malicious traffic from multi-domain systems. The present study focuses on the detection of malicious traffic with high accuracy using machine learning techniques. The proposed approach used two datasets UNSW-NB15 and IoTID20 which contain the data for IoT-based traffic and local network traffic, respectively. Both datasets were combined to increase the capability of the proposed approach in detecting malicious traffic from local and IoT networks, with high accuracy. Horizontally merging both datasets requires an equal number of features which was achieved by reducing feature count to 30 for each dataset by leveraging principal component analysis (PCA). The proposed model incorporates stacked ensemble model extra boosting forest (EBF) which is a combination of tree-based models such as extra tree classifier, gradient boosting classifier, and random forest using a stacked ensemble approach. Empirical results show that EBF performed significantly better and achieved the highest accuracy score of 0.985 and 0.984 on the multi-domain dataset for two and four classes, respectively. 相似文献
11.
Wu-Chun Chung Yung-Chin Chang Ching-Hsien Hsu Chih-Hung Chang Che-Lun Hung 《计算机、材料和连续体(英文)》2023,75(1):351-371
Federated learning is an emerging machine learning technique that enables clients to collaboratively train a deep learning model without uploading raw data to the aggregation server. Each client may be equipped with different computing resources for model training. The client equipped with a lower computing capability requires more time for model training, resulting in a prolonged training time in federated learning. Moreover, it may fail to train the entire model because of the out-of-memory issue. This study aims to tackle these problems and propose the federated feature concatenate (FedFC) method for federated learning considering heterogeneous clients. FedFC leverages the model splitting and feature concatenate for offloading a portion of the training loads from clients to the aggregation server. Each client in FedFC can collaboratively train a model with different cutting layers. Therefore, the specific features learned in the deeper layer of the server-side model are more identical for the data class classification. Accordingly, FedFC can reduce the computation loading for the resource-constrained client and accelerate the convergence time. The performance effectiveness is verified by considering different dataset scenarios, such as data and class imbalance for the participant clients in the experiments. The performance impacts of different cutting layers are evaluated during the model training. The experimental results show that the co-adapted features have a critical impact on the adequate classification of the deep learning model. Overall, FedFC not only shortens the convergence time, but also improves the best accuracy by up to 5.9% and 14.5% when compared to conventional federated learning and splitfed, respectively. In conclusion, the proposed approach is feasible and effective for heterogeneous clients in federated learning. 相似文献
12.
Muhammad Tariq Mahmood 《计算机、材料和连续体(英文)》2022,70(3):4867-4877
Detection and classification of the blurred and the non-blurred regions in images is a challenging task due to the limited available information about blur type, scenarios and level of blurriness. In this paper, we propose an effective method for blur detection and segmentation based on transfer learning concept. The proposed method consists of two separate steps. In the first step, genetic programming (GP) model is developed that quantify the amount of blur for each pixel in the image. The GP model method uses the multi-resolution features of the image and it provides an improved blur map. In the second phase, the blur map is segmented into blurred and non-blurred regions by using an adaptive threshold. A model based on support vector machine (SVM) is developed to compute adaptive threshold for the input blur map. The performance of the proposed method is evaluated using two different datasets and compared with various state-of-the-art methods. The comparative analysis reveals that the proposed method performs better against the state-of-the-art techniques. 相似文献
13.
目的 根据学习者的学习特征,运用自适应学习技术,结合数字化交互手段,探究如何对儿童英语发音学习绘本进行交互设计,以增加儿童对学习内容的吸引力,并提升儿童的英语发音水平。方法 分析目前英语发音学习绘本存在的设计痛点,从自适应学习、自适应训练、自适应测评和自适应反馈4个方面对儿童英语发音学习绘本进行设计实践与反思。结论 儿童自适应发音学习绘本利用了数字媒体的特性,通过多感官交互设计,激发了学习者的学习兴趣。此外,儿童自适应发音学习绘本综合考虑了学习者的发音水平、学习动机、学习风格等因素,为学习者提供了个性化的发音课程、情景互动式的发音训练、精准化的发音检测和具有教学表现力的发音纠正反馈,实现了真正意义上的自适应学习。 相似文献
14.
Optical Coherence Tomography (OCT) is very important in medicine and provide useful diagnostic information. Measuring retinal layer thicknesses plays a vital role in pathophysiologic factors of many ocular conditions. Among the existing retinal layer segmentation approaches, learning or deep learning-based methods belong to the state-of-art. However, most of these techniques rely on manual-marked layers and the performances are limited due to the image quality. In order to overcome this limitation, we build a framework based on gray value curve matching, which uses depth learning to match the curve for semi-automatic segmentation of retinal layers from OCT. The depth convolution network learns the column correspondence in the OCT image unsupervised. The whole OCT image participates in the depth convolution neural network operation, compares the gray value of each column, and matches the gray value sequence of the transformation column and the next column. Using this algorithm, when a boundary point is manually specified, we can accurately segment the boundary between retinal layers. Our experimental results obtained from a 54-subjects database of both normal healthy eyes and affected eyes demonstrate the superior performances of our approach. 相似文献
15.
Intrusion detection involves identifying unauthorized network activity and recognizing whether the data constitute an abnormal network transmission. Recent research has focused on using semi-supervised learning mechanisms to identify abnormal network traffic to deal with labeled and unlabeled data in the industry. However, real-time training and classifying network traffic pose challenges, as they can lead to the degradation of the overall dataset and difficulties preventing attacks. Additionally, existing semi-supervised learning research might need to analyze the experimental results comprehensively. This paper proposes XA-GANomaly, a novel technique for explainable adaptive semi-supervised learning using GANomaly, an image anomalous detection model that dynamically trains small subsets to these issues. First, this research introduces a deep neural network (DNN)-based GANomaly for semi-supervised learning. Second, this paper presents the proposed adaptive algorithm for the DNN-based GANomaly, which is validated with four subsets of the adaptive dataset. Finally, this study demonstrates a monitoring system that incorporates three explainable techniques—Shapley additive explanations, reconstruction error visualization, and t-distributed stochastic neighbor embedding—to respond effectively to attacks on traffic data at each feature engineering stage, semi-supervised learning, and adaptive learning. Compared to other single-class classification techniques, the proposed DNN-based GANomaly achieves higher scores for Network Security Laboratory-Knowledge Discovery in Databases and UNSW-NB15 datasets at 13% and 8% of F1 scores and 4.17% and 11.51% for accuracy, respectively. Furthermore, experiments of the proposed adaptive learning reveal mostly improved results over the initial values. An analysis and monitoring system based on the combination of the three explainable methodologies is also described. Thus, the proposed method has the potential advantages to be applied in practical industry, and future research will explore handling unbalanced real-time datasets in various scenarios. 相似文献
16.
Abdullah S. AL-Malaise AL-Ghamdi Mahmoud Ragab F. J. Alsolami Hani Choudhry Ibrahim Rizqallah Alzahrani 《计算机、材料和连续体(英文)》2022,72(2):2275-2291
Industrial Control Systems (ICS) can be employed on the industrial processes in order to reduce the manual labor and handle the complicated industrial system processes as well as communicate effectively. Internet of Things (IoT) integrates numerous sets of sensors and devices via a data network enabling independent processes. The incorporation of the IoT in the industrial sector leads to the design of Industrial Internet of Things (IIoT), which find use in water distribution system, power plants, etc. Since the IIoT is susceptible to different kinds of attacks due to the utilization of Internet connection, an effective forensic investigation process becomes essential. This study offers the design of an intelligent forensic investigation using optimal stacked autoencoder for critical industrial infrastructures. The proposed strategy involves the design of manta ray foraging optimization (MRFO) based feature selection with optimal stacked autoencoder (OSAE) model, named MFROFS-OSAE approach. The primary objective of the MFROFS-OSAE technique is to determine the presence of abnormal events in critical industrial infrastructures. The MFROFS-OSAE approach involves several subprocesses namely data gathering, data handling, feature selection, classification, and parameter tuning. Besides, the MRFO based feature selection approach is designed for the optimal selection of feature subsets. Moreover, the OSAE based classifier is derived to detect abnormal events and the parameter tuning process is carried out via the coyote optimization algorithm (COA). The performance validation of the MFROFS-OSAE technique takes place using the benchmark dataset and the experimental results reported the betterment of the MFROFS-OSAE technique over the recent approaches interms of different measures. 相似文献
17.
Gulzar Ahmed Tahir Alyas Muhammad Waseem Iqbal Muhammad Usman Ashraf Ahmed Mohammed Alghamdi Adel A. Bahaddad Khalid Ali Almarhabi 《计算机、材料和连续体(英文)》2022,73(2):2967-2984
Handwritten character recognition systems are used in every field of life nowadays, including shopping malls, banks, educational institutes, etc. Urdu is the national language of Pakistan, and it is the fourth spoken language in the world. However, it is still challenging to recognize Urdu handwritten characters owing to their cursive nature. Our paper presents a Convolutional Neural Networks (CNN) model to recognize Urdu handwritten alphabet recognition (UHAR) offline and online characters. Our research contributes an Urdu handwritten dataset (aka UHDS) to empower future works in this field. For offline systems, optical readers are used for extracting the alphabets, while diagonal-based extraction methods are implemented in online systems. Moreover, our research tackled the issue concerning the lack of comprehensive and standard Urdu alphabet datasets to empower research activities in the area of Urdu text recognition. To this end, we collected 1000 handwritten samples for each alphabet and a total of 38000 samples from 12 to 25 age groups to train our CNN model using online and offline mediums. Subsequently, we carried out detailed experiments for character recognition, as detailed in the results. The proposed CNN model outperformed as compared to previously published approaches. 相似文献
18.
Artificial intelligence, which has recently emerged with the rapid development of information technology, is drawing attention as a tool for solving various problems demanded by society and industry. In particular, convolutional neural networks (CNNs), a type of deep learning technology, are highlighted in computer vision fields, such as image classification and recognition and object tracking. Training these CNN models requires a large amount of data, and a lack of data can lead to performance degradation problems due to overfitting. As CNN architecture development and optimization studies become active, ensemble techniques have emerged to perform image classification by combining features extracted from multiple CNN models. In this study, data augmentation and contour image extraction were performed to overcome the data shortage problem. In addition, we propose a hierarchical ensemble technique to achieve high image classification accuracy, even if trained from a small amount of data. First, we trained the UC-Merced land use dataset and the contour images for each image on pretrained VGGNet, GoogLeNet, ResNet, DenseNet, and EfficientNet. We then apply a hierarchical ensemble technique to the number of cases in which each model can be deployed. These experiments were performed in cases where the proportion of training datasets was 30%, 50%, and 70%, resulting in a performance improvement of up to 4.68% compared to the average accuracy of the entire model. 相似文献
19.
Motion segmentation is a crucial step for video analysis and has many applications. This paper proposes a method for motion segmentation, which is based on construction of statistical background model. Variance and Covariance of pixels are computed to construct the model for scene background. We perform average frame differencing with this model to extract the objects of interest from the video frames. Morphological operations are used to smooth the object segmentation results. The proposed technique is adaptive to the dynamically changing background because of change in the lighting conditions and in scene background. The method has the capability to relearn the background to adapt these variations. The immediate advantage of the proposed method is its high processing speed of 30 frames per second on large sized (high resolution) videos. We compared the proposed method with other five popular methods of object segmentation in order to prove the effectiveness of the proposed technique. Experimental results demonstrate the novelty of the proposed method in terms of various performance parameters. The method can segment the video stream in real-time, when background changes, lighting conditions vary, and even in the presence of clutter and occlusion 相似文献