首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wireless sensor network (WSN) is considered as the fastest growing technology pattern in recent years because of its applicability in varied domains. Many sensor nodes with different sensing functionalities are deployed in the monitoring area to collect suitable data and transmit it to the gateway. Ensuring communications in heterogeneous WSNs, is a critical issue that needs to be studied. In this research paper, we study the system performance of a heterogeneous WSN using LoRa–Zigbee hybrid communication. Specifically, two Zigbee sensor clusters and two LoRa sensor clusters are used and combined with two Zigbee-to-LoRa converters to communicate in a network managed by a LoRa gateway. The overall system integrates many different sensors in terms of types, communication protocols, and accuracy, which can be used in many applications in realistic environments such as on land, under water, or in the air. In addition to this, a synchronous management software on ThingSpeak Web server and Blynk app is designed. In the proposed system, the token ring protocol in Zigbee network and polling mechanism in LoRa network is used. The system can operate with a packet loss rate of less than 0.5% when the communication range of the Zigbee network is 630 m, and the communication range of the LoRa network is 3.7 km. On the basis of the digital results collected on the management software, this study proves tremendous improvements in the system performance.  相似文献   

2.
Wireless Sensor Network (WSN) is an important part of the Internet of Things (IoT), which are used for information exchange and communication between smart objects. In practical applications, WSN lifecycle can be influenced by the unbalanced distribution of node centrality and excessive energy consumption, etc. In order to overcome these problems, a heterogeneous wireless sensor network model with small world characteristics is constructed to balance the centrality and enhance the invulnerability of the network. Also, a new WSN centrality measurement method and a new invulnerability measurement model are proposed based on the WSN data transmission characteristics. Simulation results show that the life cycle and data transmission volume of the network can be improved with a lower network construction cost, and the invulnerability of the network is effectively enhanced.  相似文献   

3.
Detection of the wormhole attacks is a cumbersome process, particularly simplex and duplex over the wireless sensor networks (WSNs). Wormhole attacks are characterized as distributed passive attacks that can destabilize or disable WSNs. The distributed passive nature of these attacks makes them enormously challenging to detect. The main objective is to find all the possible ways in which how the wireless sensor network’s broadcasting character and transmission medium allows the attacker to interrupt network within the distributed environment. And further to detect the serious routing-disruption attack “Wormhole Attack” step by step through the different network mechanisms. In this paper, a new multi-step detection (MSD) scheme is introduced that can effectively detect the wormhole attacks for WSN. The MSD consists of three algorithms to detect and prevent the simplex and duplex wormhole attacks. Furthermore, the proposed scheme integrated five detection modules to systematically detect, recover, and isolate wormhole attacks. Simulation results conducted in OMNET++ show that the proposed MSD has lower false detection and false toleration rates. Besides, MSD can effectively detect wormhole attacks in a completely distributed network environment, as suggested by the simulation results.  相似文献   

4.
This invention system involves hardware, firmware and software to develop an intelligent control system of automatic window motor with diverse wireless sensor network (WSN) devices for health and environmental monitoring. The parts of this invention are improved by implementing the WSN mote into environmental sensors that may detect temperature, humility, toxic gas, smog or aerosol, etc. With embedded system design, these sensors are capable of delivering WSN signal packets based on ZigBee protocol that follows the IEEE 802.14.4 standards. The primary hardware of the system is the window motor with circuit design by integrating micro control unit (MCU), radio frequency (RF) and WSN antenna to receive command. The firmware developed under embedded system can bridge hardware and software to control the window at the specified position. At the back end, the control system software can manage diverse sensor data and provide the interface for remote monitoring.  相似文献   

5.
Network energy is the main constraint that affects the practical design of wireless sensor networks (WSNs) as the nodes have limited resource capabilities. This aticle presents a novel EOP-LEACH (Efficient Optimized Practical-LEACH) that is proposed to overcome limitations of conventional low energy adaptive clustering hierarchy (LEACH) protocol to improve the life time and reduce the energy consumption of the WSN. The proposed enhancement is achieved by inserting novel factors in the threshold equation of conventional LEACH in order to choose the optimum node to be Cluster Head (CH).. The novel proposed parameters to be inserted are the Received Signal Strength (RSSI) which is related to the communication pass distance and link quality indication (LQI) that reflect the effect of communication channel noise and interference. Multihop routing, based mainly on RSSI values of neighbor nodes, is another proposed improvement to conventional LEACH to decrease distance of transmission which leads to savings in network energy. The simulation of the proposed protocols was done using MATLAB software. Comparison between the performance of proposed protocols and conventional LEACH shows that the WSN performance is improved using the proposed protocols.  相似文献   

6.
介绍了ZigBee技术的概念、特点,并给出了基于ZigBee技术的航空电源车自动检测与控制系统.通过对ZigBee技术在航空电源车自动检测上的应用进行分析,提出了该系统的硬件与软件设计,实现了数据的采集和无线传输.ZigBee技术在航空电源车自动检测上的应用,即利用ZigBee无线传感器对航空电源车数据进行采集,然后以ZigBee无线传输模式将这些数据传送到保障指挥中心,计算机对这些数据进行分析整理后,为保障指挥人员准确判断航空电源车状态提供依据,因此能够及时发现航空电源车的故障,减少了装备维修所需的时间,大大提高了装备保障的效率.  相似文献   

7.
Data collection using a mobile sink in a Wireless Sensor Network (WSN) has received much attention in recent years owing to its potential to reduce the energy consumption of sensor nodes and thus enhancing the lifetime of the WSN. However, a critical issue of this approach is the latency of data to reach the base station. Although many data collection algorithms have been introduced in the literature to reduce delays in data delivery, their performances are affected by the flight trajectory taken by the mobile sink, which might not be optimized yet. This paper proposes a new path-finding strategy, called Energy-efficiency Path-finding Strategy (EPS) in the Air-Ground Collaborative Wireless Sensor Network (AGCWSN). The proposed approach is able to greatly enhance the efficiency of data collection. The performance of the proposed strategy is simulated and compared with the existing strategies over several parameters. The simulation results show that the mobile sink with EPS can collects data with lower data delivery delay as compared to other existing strategies. The number of data retransmissions between sensor nodes and mobile sink in EPS is also the lowest in EPS among several existing strategies. The data delivery delay is 66% and 120% lower than Rest Center Tractor Scanning (RCTS) and Non-stop Center Tractor Scanning (NCTS) in irregular and grid topology respectively. The data delivery delay is 62% lower than Two Row Scanning (TRS) in grid topology and 120% lower than RkM in irregular topology. The packet loss of EPS-2 is 1.3% lower than RkM.  相似文献   

8.
Software Defined Network (SDN) deals with huge data processing units which possess network management. However, due to centralization behavior ensuring security in SDN is the major concern. In this work to ensure security, a security server has been at its aid to check the vulnerability of the networks and to keep an eye on the packet according to the screening policies. A Secure Shell Connection (SSH) is established by the security server which does a frequent inspection of the network’s logs. Malware detection and the Intrusion Detection System policies are also incorporated in the server for the effective scanning of the packets. In response to a suspicious log or the packets in the SDN network there is a change in the security norms. Hence the proposed work updates the security policies in accordance with the attacker mentality.  相似文献   

9.
Wireless Body Area Sensor Network (WBASN) is an automated system for remote health monitoring of patients. WBASN under umbrella of Internet of Things (IoT) is comprised of small Biomedical Sensor Nodes (BSNs) that can communicate with each other without human involvement. These BSNs can be placed on human body or inside the skin of the patients to regularly monitor their vital signs. The BSNs generate critical data as it is related to patient's health. The data traffic can be classified as Sensitive Data (SD) and Non-sensitive Data (ND) packets based on the value of vital signs. These data packets have different priority to deliver. The ND packets may tolerate some delay or packet loss whereas, the SD packets required to be delivered on time with minimized packet loss otherwise it can be life threating to the patients. In this research, we propose a Traffic Priority-aware Medical Data Dissemination (TPMD2) scheme for WBASN to deliver the data packets according to their priority based on the sensitivity of the data. The assessment of the proposed scheme is carried out in various experiments. The simulation results of the TPMD2 scheme indicate a significant improvement in packets delivery, transmission delay and energy efficiency in comparison with the existing schemes.  相似文献   

10.
Long Range Wide Area Network (LoRaWAN) in the Internet of Things (IoT) domain has been the subject of interest for researchers. There is an increasing demand to localize these IoT devices using LoRaWAN due to the quickly growing number of IoT devices. LoRaWAN is well suited to support localization applications in IoTs due to its low power consumption and long range. Multiple approaches have been proposed to solve the localization problem using LoRaWAN. The Expected Signal Power (ESP) based trilateration algorithm has the significant potential for localization because ESP can identify the signal’s energy below the noise floor with no additional hardware requirements and ease of implementation. This research article offers the technical evaluation of the trilateration technique, its efficiency, and its limitations for the localization using LoRa ESP in a large outdoor populated campus environment. Additionally, experimental evaluations are conducted to determine the effects of frequency hopping, outlier removal, and increasing the number of gateways on localization accuracy. Results obtained from the experiment show the importance of calculating the path loss exponent for every frequency to circumvent the high localization error because of the frequency hopping, thus improving the localization performance without the need of using only a single frequency.  相似文献   

11.
Security is a vital parameter to conserve energy in wireless sensor networks (WSN). Trust management in the WSN is a crucial process as trust is utilized when collaboration is important for accomplishing trustworthy data transmission. But the available routing techniques do not involve security in the design of routing techniques. This study develops a novel statistical analysis with dingo optimizer enabled reliable routing scheme (SADO-RRS) for WSN. The proposed SADO-RRS technique aims to detect the existence of attacks and optimal routes in WSN. In addition, the presented SADO-RRS technique derives a new statistics based linear discriminant analysis (LDA) for attack detection, Moreover, a trust based dingo optimizer (TBDO) algorithm is applied for optimal route selection in the WSN and accomplishes secure data transmission in WSN. Besides, the TBDO algorithm involves the derivation of the fitness function involving different input variables of WSN. For demonstrating the enhanced outcomes of the SADO-RRS technique, a wide range of simulations was carried out and the outcomes demonstrated the enhanced outcomes of the SADO-RRS technique.  相似文献   

12.
为解决火龙果园无线传感器网络监控系统的规划和布置,研究无线网络射频信号在坡地火龙果园特定环境下的信道传播特性和衰减模型。选用2.4GHz为载波频率,基于ZigBee协议改变通信距离、发射功率、数据包长度、天线高度等多项参数,试验和分析无线信道在约35°坡地果园中的接收信号强度和平均丢包率;建立接收信号强度和环境因子、通信距离间的数学模型;改变试验环境,对比开阔环境和果园环境对无线网络通信质量的影响。试验结果表明:接收信号强度随着通信距离的增加而减小;其平均丢包率随距离增大、作物密度增强、数据包长度增大、天线高度降低而增大;相对于开阔环境,火龙果园会加速信号的衰减、增大平均丢包率。对试验数据进行拟合,并建立其与通信距离间对数数学模型,其r2在0.8889~0.958之间,得出火龙果园信号衰减系数平均为-18.29。  相似文献   

13.
The advances in wireless communication, microelectronics, digital electronics, and highly integrated electronics and the increasing need for more efficient controlled electric systems make the development of monitoring and supervisory control tools the object of study of many researchers. This paper proposes a digital system for energy usage evaluation, condition monitoring, diagnosis, and supervisory control for electric systems applying wireless sensor networks (WSNs) with dynamic power management (DPM). The system is based on two hardware topologies responsible for signal acquisition, processing, and transmission: intelligent sensor modules (ISMs) and remote data acquisition units (RDAUs). The gateway function of the wired network is carried out by remote servers (RSs) based on the Soekris architecture, which is responsible for receiving the data collected and transmitting it to the supervisory controller (SC). To extend the WSN lifetime, sensor nodes implement a DPM protocol. The basic characteristics of the presented system are the following: 1) easy implementation; 2) low-cost implementation; 3) easy implementation of redundant routines (security); 4) portability/versatility; and 5) extended network lifetime.   相似文献   

14.
Wireless Sensor Networks (WSNs) comprises low power devices that are randomly distributed in a geographically isolated region. The energy consumption of nodes is an essential factor to be considered. Therefore, an improved energy management technique is designed in this investigation to reduce its consumption and to enhance the network’s lifetime. This can be attained by balancing energy clusters using a meta-heuristic Firefly algorithm model for network communication. This improved technique is based on the cluster head selection technique with measurement of the tour length of fireflies. Time Division Multiple Access (TDMA) scheduler is also improved with the characteristics/behavior of fireflies and also executed. At last, the development approach shows the progression of the network lifetime, the total number of selected Cluster Heads (CH), the energy consumed by nodes, and the number of packets transmitted. This approach is compared with Ad hoc On-Demand Distance Vector (AODV), Dynamic Source Routing (DSR) and Low Energy Adaptive Clustering Hierarchy (LEAH) protocols. Simulation is performed in MATLAB with the numerical outcomes showing the efficiency of the proposed approach. The energy consumption of sensor nodes is reduced by about 50% and increases the lifetime of nodes by 78% more than AODV, DSR and LEACH protocols. The parameters such as cluster formation, end to end delay, percentage of nodes alive and packet delivery ratio, are also evaluated... The anticipated method shows better trade-off in contrast to existing techniques.  相似文献   

15.
针对现有无线传感器网络节点的不足和机械振动信号采集的需求,设计了一种可实现机械振动信号采集和片上处理的无线传感器网络节点。该节点采用MEMS加速度传感器拾取振动信号,以低功耗FPGA芯片为控制核心,采用了可编程片上系统技术,将数据采集、存储、处理和传输等控制功能模块集成到单个FPGA芯片中。本文着重介绍了节点数据采集、存储和传输部分的硬件电路和控制逻辑设计,对比实验表明该节点能有效采集和监测机械振动信号。  相似文献   

16.
Wireless sensor networks (WSN) encompass a set of inexpensive and battery powered sensor nodes, commonly employed for data gathering and tracking applications. Optimal energy utilization of the nodes in WSN is essential to capture data effectively and transmit them to destination. The latest developments of energy efficient clustering techniques can be widely applied to accomplish energy efficiency in the network. In this aspect, this paper presents an enhanced Archimedes optimization based cluster head selection (EAOA-CHS) approach for WSN. The goal of the EAOA-CHS method is to optimally choose the CHs from the available nodes in WSN and then organize the nodes into a set of clusters. Besides, the EAOA is derived by the incorporation of the chaotic map and pseudo-random performance. Moreover, the EAOA-CHS technique determines a fitness function involving total energy consumption and lifetime of WSN. The design of EAOA for CH election in the WSN depicts the novelty of work. In order to exhibit the enhanced efficiency of EAOA-CHS technique, a set of simulations are applied on 3 distinct conditions dependent upon the place of base station (BS). The simulation results pointed out the better outcomes of the EAOA-CHS technique over the recent methods under all scenarios.  相似文献   

17.
Wireless sensor network (WSN) has been widely used due to its vast range of applications. The energy problem is one of the important problems influencing the complete application. Sensor nodes use very small batteries as a power source and replacing them is not an easy task. With this restriction, the sensor nodes must conserve their energy and extend the network lifetime as long as possible. Also, these limits motivate much of the research to suggest solutions in all layers of the protocol stack to save energy. So, energy management efficiency becomes a key requirement in WSN design. The efficiency of these networks is highly dependent on routing protocols directly affecting the network lifetime. Clustering is one of the most popular techniques preferred in routing operations. In this work we propose a novel energy-efficient protocol for WSN based on a bat algorithm called ECO-BAT (Energy Consumption Optimization with BAT algorithm for WSN) to prolong the network lifetime. We use an objective function that generates an optimal number of sensor clusters with cluster heads (CH) to minimize energy consumption. The performance of the proposed approach is compared with Low-Energy Adaptive Clustering Hierarchy (LEACH) and Energy Efficient cluster formation in wireless sensor networks based on the Multi-Objective Bat algorithm (EEMOB) protocols. The results obtained are interesting in terms of energy-saving and prolongation of the network lifetime.  相似文献   

18.
Owing to the growing demand for low-cost 'networkable' sensors in conjunction with recent developments of micro-electro mechanical system (MEMS) and radio frequency (RF) technology, new sensors come with advanced functionalities for processing and communication. Since these nodes are normally very small and powered with irreplaceable batteries, efficient use of energy is paramount and one of the most challenging tasks in designing wireless sensor networks (WSN). A new energy-aware WSN routing protocol, reliable and energy efficient protocol (REEP), which is proposed, makes sensor nodes establish more reliable and energy-efficient paths for data transmission. The performance of REEP has been evaluated under different scenarios, and has been found to be superior to the popular data-centric routing protocol, directed-diffusion (DD) (discussed by Intanagonwiwat et al. in `Directed diffusion for wireless sensor networking? IEEE/ACM Trans. Netw., 2003, 11(1), pp. 2?16), used as the benchmark.  相似文献   

19.
In a large-scale wireless sensor network (WSN), densely distributed sensor nodes process a large amount of data. The aggregation of data in a network can consume a great amount of energy. To balance and reduce the energy consumption of nodes in a WSN and extend the network life, this paper proposes a nonuniform clustering routing algorithm based on the improved K-means algorithm. The algorithm uses a clustering method to form and optimize clusters, and it selects appropriate cluster heads to balance network energy consumption and extend the life cycle of the WSN. To ensure that the cluster head (CH) selection in the network is fair and that the location of the selected CH is not concentrated within a certain range, we chose the appropriate CH competition radius. Simulation results show that, compared with LEACH, LEACH-C, and the DEEC clustering algorithm, this algorithm can effectively balance the energy consumption of the CH and extend the network life.  相似文献   

20.
In the past few decades, Energy Efficiency (EE) has been a significant challenge in Wireless Sensor Networks (WSNs). WSN requires reduced transmission delay and higher throughput with high quality services, it further pays much attention in increased energy consumption to improve the network lifetime. To collect and transmit data Clustering based routing algorithm is considered as an effective way. Cluster Head (CH) acts as an essential role in network connectivity and perform data transmission and data aggregation, where the energy consumption is superior to non-CH nodes. Conventional clustering approaches attempts to cluster nodes of same size. Moreover, owing to randomly distributed node distribution, a cluster with equal nodes is not an obvious possibility to reduce the energy consumption. To resolve this issue, this paper provides a novel, Balanced-Imbalanced Cluster Algorithm (B-IBCA) with a Stabilized Boltzmann Approach (SBA) that attempts to balance the energy dissipation across uneven clusters in WSNs. BIBCA utilizes stabilizing logic to maintain the consistency of energy consumption among sensor nodes’. So as to handle the changing topological characteristics of sensor nodes, this stability based Boltzmann estimation algorithm allocates proper radius amongst the sensor nodes. The simulation shows that the proposed B-IBCA outperforms effectually over other approaches in terms of energy efficiency, lifetime, network stability, average residual energy and so on.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号