首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
This paper proposes a novel framework to detect cyber-attacks using Machine Learning coupled with User Behavior Analytics. The framework models the user behavior as sequences of events representing the user activities at such a network. The represented sequences are then fitted into a recurrent neural network model to extract features that draw distinctive behavior for individual users. Thus, the model can recognize frequencies of regular behavior to profile the user manner in the network. The subsequent procedure is that the recurrent neural network would detect abnormal behavior by classifying unknown behavior to either regular or irregular behavior. The importance of the proposed framework is due to the increase of cyber-attacks especially when the attack is triggered from such sources inside the network. Typically detecting inside attacks are much more challenging in that the security protocols can barely recognize attacks from trustful resources at the network, including users. Therefore, the user behavior can be extracted and ultimately learned to recognize insightful patterns in which the regular patterns reflect a normal network workflow. In contrast, the irregular patterns can trigger an alert for a potential cyber-attack. The framework has been fully described where the evaluation metrics have also been introduced. The experimental results show that the approach performed better compared to other approaches and AUC 0.97 was achieved using RNN-LSTM 1. The paper has been concluded with providing the potential directions for future improvements.  相似文献   

2.
丁光耀  徐辰  钱卫宁  周傲英 《软件学报》2024,35(3):1207-1230
计算机视觉因其强大的学习能力,在各种真实场景中得到了广泛应用.随着数据库的发展,利用数据库中成熟的数据管理技术来处理视觉分析应用,已成为一种日益增长的研究趋势.图像、视频和文本等多模态数据的相互融合处理,也促进了视觉分析应用的多样性和准确性.近年来,因深度学习的兴起,支持深度学习的视觉分析应用开始受到广泛关注.然而,传统的数据库管理技术在深度学习场景下面临着复杂视觉分析语义难以表达、应用执行效率低等问题.因此,支持深度学习的视觉数据库管理系统得到了广泛关注.综述了目前视觉数据库管理系统的研究进展:首先,总结了视觉数据库管理系统在不同层面上面临的挑战,包括编程接口、查询优化、执行调度和数据存储;其次,分别探讨了上述4个层面上的相关技术;最后,对视觉数据库管理系统未来的研究方向进行了展望.  相似文献   

3.
可视化与可视分析已成为众多领域中结合人类智能与机器智能协同理解、分析数据的常见手段。人工智能可以通过对大数据的学习分析提高数据质量,捕捉关键信息,并选取最有效的视觉呈现方式,从而使用户更快、更准确、更全面地从可视化中理解数据。利用人工智能方法,交互式可视化系统也能更好地学习用户习惯及用户意图,推荐符合用户需求的可视化形式、交互操作和数据特征,从而降低用户探索的学习及时间成本,提高交互分析的效率。人工智能方法在可视化中的应用受到了极大关注,产生了大量学术成果。本文从最新工作出发,探讨人工智能在可视化流程的关键步骤中的作用。包括如何智能地表示和管理数据、如何辅助用户快速创建和定制可视化、如何通过人工智能扩展交互手段及提高交互效率、如何借助人工智能辅助数据的交互分析等。具体而言,本文详细梳理每个步骤中需要完成的任务及解决思路,介绍相应的人工智能方法(如深度网络结构),并以图表数据为例介绍智能可视化与可视分析的应用,最后讨论智能可视化方法的发展趋势,展望未来的研究方向及应用场景。  相似文献   

4.
    
Chronic kidney disease (CKD) is a major public health concern with rising prevalence and huge costs associated with dialysis and transplantation. Early prediction of CKD can reduce the patient's risk of CKD progression to end-stage kidney failure. Artificial intelligence offers more intelligent and expert healthcare services in disease diagnosis. In this work, a deep learning model is built using deep neural networks (DNN) with an adaptive moment estimation optimization function to predict early-stage CKD. The health care applications require interpretability over the predictions of the black-box model to build conviction towards the model's prediction. Hence, the predictions of the DNN-CKD model are explained by the local interpretable model-agnostic explainer (LIME). The diagnostic patient data is trained on five layered DNN with three hidden layers. Over the unseen data, the DNN-CKD model yields an accuracy of 98.75% and a roc_auc score of 98.86% in detecting CKD risk. The explanation revealed by the LIME algorithm echoes the influence of each feature on the prediction made by the DNN-CKD model over the given CKD data. With its interpretability and accuracy, the proposed system may effectively help medical experts in the early diagnosis of CKD.  相似文献   

5.
超声造影(Contrast-enhanced ultrasound, CEUS)通过外周静脉注入超声造影剂,显著增强来自肿瘤微血管的血流信号,便于临床医生以实时、动态的方式评估肿瘤血管生成、周边浸润等,广泛应用于多器官病变诊断、预后评估和治疗方案规划等方面。近年来,以深度学习为代表的机器学习方法快速发展,为动态超声造影智能分析带来新的机遇。深度学习方法很大程度上拓宽了超声造影临床应用范围,提高了其诊疗效能。但与常规超声影像类似,超声造影仍然存在斑点噪声、呼吸运动干扰和标准化程度低等问题,使得动态灌注时间、空间信息挖掘面临挑战。本文系统性回顾了近年来超声造影智能分析相关工作,涵盖良恶性鉴别、恶性分级、疗效预测和诊疗方案选择等方面应用,总结了当前影像组学及深度学习方法在超声造影分析领域的最新进展,并指出当前研究的局限性和未来发展方向。  相似文献   

6.
    
The increase in available data from sensors embedded in industrial equipment has led to a recent rise in the use of industrial predictive maintenance. In the aircraft industry, predictive maintenance has become an essential tool for optimizing maintenance schedules, reducing aircraft downtime, and identifying unexpected faults. Despite this, there is currently no comprehensive survey of predictive maintenance applications and techniques solely devoted to the aircraft manufacturing industry. This article is an in-depth state-of-the-art systematic literature review of the different data types, applications, projects, and opportunities for predictive maintenance in this industry. The goal of this review is to identify, and highlight the challenges and opportunities for future research in this field. This review found that the current focus of research is too biased towards aircraft engines due to a lack of publicly available data sets, and that greater automation is an important step to optimize aircraft maintenance to its full potential.  相似文献   

7.
    
Investigating emotion sequence patterns in the posts of discussion forums in massive open online courses (MOOCs) holds a vital role in shaping online interactions and impacting learning achievement. While the majority of research focuses on the relationship between emotions and interactions in MOOC forum discussions, research on identifying the crucial difference in emotion sequence patterns among different interaction groups remains in its infancy.  相似文献   

8.
高效准确的流线绘制一直是流场可视化的重要研究内容,流线可以对流场的重要特征进行有效的稀疏表示,但流线需要长期的粒子追踪过程及大量的积分计算,在面向大规模流场可视化时时间效率较低,需要高性能计算设备进行辅助计算.本文通过设计一种基于深度学习的高精度流线生成算法,将初始的低精度流线快速映射为稠密的高精度流线,可以在较短的时间内快速生成可靠的流线可视化结果,并在此基础上设计了交互式实时流场可视化系统,涵盖了流场的特征检测,属性关联分析,信息论分析等,帮助用户快速了解流场数据,找到自己感兴趣的区域进行后续进一步深度分析,避免了获取过多冗余数据,同时优化了分析工作的效率,满足用户对于流场结构,特征属性等多维度进行关联分析的需求.  相似文献   

9.
    
Deep learning has proven itself to be a difficult problem in the HPC space. Although the algorithm can scale very efficiently with a sufficiently large batchsize, the efficacy of training tends to decrease as the batchsize grows. Scaling the training of a single model may be effective in narrow fields such as image classification, but more generalizable options can be achieved when considering alternate methods of parallelism and the larger workflow surrounding neural network training. Hyperparameter optimization, data set segmentation, hierarchical fine tuning, and model parallelism can all provide significant scaling capacity without increasing batchsize and can be paired with a traditional, single‐model scaling approach for a multiplicative scaling improvement. This paper intends to further define and examine these scaling techniques in how they perform individually and how combining them can provide significant improvements in overall training times.  相似文献   

10.
    
In recent years, huge volumes of healthcare data are getting generated in various forms. The advancements made in medical imaging are tremendous owing to which biomedical image acquisition has become easier and quicker. Due to such massive generation of big data, the utilization of new methods based on Big Data Analytics (BDA), Machine Learning (ML), and Artificial Intelligence (AI) have become essential. In this aspect, the current research work develops a new Big Data Analytics with Cat Swarm Optimization based deep Learning (BDA-CSODL) technique for medical image classification on Apache Spark environment. The aim of the proposed BDA-CSODL technique is to classify the medical images and diagnose the disease accurately. BDA-CSODL technique involves different stages of operations such as preprocessing, segmentation, feature extraction, and classification. In addition, BDA-CSODL technique also follows multi-level thresholding-based image segmentation approach for the detection of infected regions in medical image. Moreover, a deep convolutional neural network-based Inception v3 method is utilized in this study as feature extractor. Stochastic Gradient Descent (SGD) model is used for parameter tuning process. Furthermore, CSO with Long Short-Term Memory (CSO-LSTM) model is employed as a classification model to determine the appropriate class labels to it. Both SGD and CSO design approaches help in improving the overall image classification performance of the proposed BDA-CSODL technique. A wide range of simulations was conducted on benchmark medical image datasets and the comprehensive comparative results demonstrate the supremacy of the proposed BDA-CSODL technique under different measures.  相似文献   

11.
    
Object classification is a vital part of any video analytics system, which could aid in complex applications such as object monitoring and management. Traditional video analytics systems work on shallow networks and are unable to harness the power of distributed processing for training and inference. We propose a cloud-based video analytics system based on an optimally tuned convolutional neural network to classify objects from video streams. The tuning of convolutional neural network is empowered by in-memory distributed computing. The object classification is performed by comparing the target object with the prestored trained patterns, generating a set of matching scores. The matching scores greater than an empirically determined threshold reveal the classification of the target object. The proposed system proved to be robust to classification errors with an accuracy and precision of 97% and 96%, respectively, and can be used as a general-purpose video analytics system.  相似文献   

12.
Given the recent trend in Data Science (DS) and Sports Analytics, an opportunity has arisen for utilizing Machine Learning (ML) and Data Mining (DM) techniques in sports. This paper reviews background and advanced basketball metrics used in National Basketball Association (NBA) and Euroleague games. The purpose of this paper is to benchmark existing performance analytics used in the literature for evaluating teams and players. Basketball is a sport that requires full set enumeration of parameters in order to understand the game in depth and analyze the strategy and decisions by minimizing unpredictability. This research provides valuable information for team and player performance basketball analytics to be used for better understanding of the game. Furthermore, these analytics can be used for team composition, athlete career improvement and assessing how this could be materialized for future predictions. Hence, critical analysis of these metrics are valuable tools for domain experts and decision makers to understand the strengths and weaknesses in the game, to better evaluate opponent teams, to see how to optimize performance indicators, to use them for team and player forecasting and finally to make better choices for team composition.  相似文献   

13.
    
Lately, the Internet of Things (IoT) application requires millions of structured and unstructured data since it has numerous problems, such as data organization, production, and capturing. To address these shortcomings, big data analytics is the most superior technology that has to be adapted. Even though big data and IoT could make human life more convenient, those benefits come at the expense of security. To manage these kinds of threats, the intrusion detection system has been extensively applied to identify malicious network traffic, particularly once the preventive technique fails at the level of endpoint IoT devices. As cyberattacks targeting IoT have gradually become stealthy and more sophisticated, intrusion detection systems (IDS) must continually emerge to manage evolving security threats. This study devises Big Data Analytics with the Internet of Things Assisted Intrusion Detection using Modified Buffalo Optimization Algorithm with Deep Learning (IDMBOA-DL) algorithm. In the presented IDMBOA-DL model, the Hadoop MapReduce tool is exploited for managing big data. The MBOA algorithm is applied to derive an optimal subset of features from picking an optimum set of feature subsets. Finally, the sine cosine algorithm (SCA) with convolutional autoencoder (CAE) mechanism is utilized to recognize and classify the intrusions in the IoT network. A wide range of simulations was conducted to demonstrate the enhanced results of the IDMBOA-DL algorithm. The comparison outcomes emphasized the better performance of the IDMBOA-DL model over other approaches.  相似文献   

14.
针对肝纤维化临床诊断方法具有有创性和传统机器学习方法特征提取的不完全性的缺陷,本文采用深度迁移学习方法利用预训练的ResNet-18和VGGNet-11模型用于肝纤维化分期诊断.使用南方医科大学提供的大鼠肝纤维化核磁共振影像数据集进行不同程度的迁移训练.将两种模型在通过4种不同参数采集的核磁共振影像数据集上,分别使用6种网络迁移配置训练.实验结果表明,使用T1RHO-FA参数采集的核磁共振影像和采用VGGNet-11模型更能提高肝纤维化分期诊断的准确率.同时相对于ResNet-18模型,深度模型迁移学习方法能稳定提升VGGNet-11模型进行肝纤维化分期诊断的准确率和训练速度.  相似文献   

15.
    
The use and creation of machine-learning-based solutions to solve problems or reduce their computational costs are becoming increasingly widespread in many domains. Deep Learning plays a large part in this growth. However, it has drawbacks such as a lack of explainability and behaving as a black-box model. During the last few years, Visual Analytics has provided several proposals to cope with these drawbacks, supporting the emerging eXplainable Deep Learning field. This survey aims to (i) systematically report the contributions of Visual Analytics for eXplainable Deep Learning; (ii) spot gaps and challenges; (iii) serve as an anthology of visual analytical solutions ready to be exploited and put into operation by the Deep Learning community (architects, trainers and end users) and (iv) prove the degree of maturity, ease of integration and results for specific domains. The survey concludes by identifying future research challenges and bridging activities that are helpful to strengthen the role of Visual Analytics as effective support for eXplainable Deep Learning and to foster the adoption of Visual Analytics solutions in the eXplainable Deep Learning community. An interactive explorable version of this survey is available online at https://aware-diag-sapienza.github.io/VA4XDL .  相似文献   

16.
为适应摄像头在智慧城市、智能交通、自动驾驶等新兴领域应用部署愈加广泛的需求,视频分析需更高精度、更低延时地响应分析结果。然而,这种高精度的分析同时也带来了巨大的计算资源需求,计算资源受限的摄像头无法胜任分析任务。边缘计算不仅可以解决本地摄像头计算资源问题,还可以显著降低向云端传输视频流数据的时间。本文探讨了利用深度强化学习方法,在边缘节点辅助摄像头集群视频分析任务场景下,根据当前网络系统条件动态决策,卸载部分指定摄像头上的分析任务,以在满足任务响应延时的约束前提下,最大化一段时间内任务分析的精度。仿真结果表明,本文提出的方法在任务的响应延时和准确度方面获得了良好效果。  相似文献   

17.
ABSTRACT

In recent years, the application of technological innovation in higher education has become more and more widely spread, and technological innovation has been improving the level of education. In the research of higher education with innovation technology, one of the main focuses is on the dynamic data which can lay a foundation for the analysis of educational activities by learning analytics. The dynamic data created by technological innovation will become the key basis for analytical research and development in higher education. The methods and analysis results of learning analytics will directly affect decision-making and strategy about higher education. In this paper, we use bibliometric and visualisation methods to review the literature, in order to highlight the development of learning analytics in higher education. Using bibliometric analysis, our study depicts the development process of the main methods used in learning analytics, and summarises the current situation in this field, which increases the level of understanding provided by those studies. Finally, we summarise the research hotspots and study trends, which will be useful for future study in this field.  相似文献   

18.
阿尔茨海默病是一种常见的神经退行性疾病,可依据神经影像学进行临床诊断。深度学习能够挖掘患者影像资料中隐含的丰富信息并完成不同阶段的病程分类,是目前计算机辅助诊断领域的研究热点。介绍阿尔茨海默病神经影像学数据集,总结经典深度学习网络模型在阿尔茨海默病分类诊断中的应用以及深度学习模型可解释性,重点对卷积神经网络与融合多网络的分类诊断方法进行梳理分析,对不同的思路和方法综合对比,讨论深度学习在阿尔茨海默病辅助诊断领域面临的挑战与未来研究方向,对提高阿尔茨海默病的临床诊断效率与早期预测准确性具有重要意义。  相似文献   

19.
为了实现文本描述中的快速并发症的准确预判,该文结合知识图谱、表示学习、深度神经网络等方法构建了一个并发症辅助诊断模型。该模型首先构建医疗领域的知识图谱,并通过知识表示模型对医疗领域知识进行编码,结合患者主诉文本获取患者症状实体的表示向量,再将患者主诉表示向量和指标表示向量通过CNN-DNN网络对并发症进行辅助诊断。实验选取了糖尿病的3种并发症: 高血压、糖尿病肾病和糖尿病视网膜病变作为测试。该文模型的准确率对比支持向量机、随机森林和单独的深度神经网络在高血压、糖尿病肾病和糖尿病视网膜病变上分别提高了5%、5%、14%和27%、6%、9%,说明该文模型能够充分融合医疗知识图谱和深度学习技术,对提高并发症的诊断起到积极作用。  相似文献   

20.
深度学习辅助诊断是减少临床中骨折漏诊误诊的有效方法。目前,深度学习在骨折诊断中的研究成果较多,但缺少对该领域研究现状进行总结分析的综述性文章。对领域内现有的文献进行总结;介绍骨折影像及相关数据集;系统地阐述三种基于深度学习的骨折辅助诊断方法,对各方法中包含的深度学习模型进行比较;按照不同骨折类型进行分类,对各类型骨折诊断中深度学习方法的应用进行展示。分析发现,深度学习在骨折诊断领域的应用和研究已取得显著进展,模型性能可与临床医生相当。但模型在训练时受数据集的影响较大,新的模型和技术较难得到实施。深度学习辅助骨折诊断仍有较大的发展空间。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号