首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
2.
Lung cancer poses a serious threat to human life with high incidence and miRNA is an important biomarker in tumors. This study aimed to explore the effect of miR-143-3p on the biological function of lung cancer cells and the underlying mechanism. Eighty-seven samples of lung cancer tissues and 81 samples of tumor-adjacent tissues from patients undergoing radical lung cancer surgery in our hospital were collected. The lung cancer cells and lung fibroblast cells (HFL-1) were purchased, and then miR-143-3p-mimics, miR-NC, si-CTNND1, and NC were transfected into A549 and PC-9 cells to establish cell models. MiR-143-3p and CTNND1 expression levels were measured by the qRTPCR, Bax, Bcl-2, and CTNND1 expression levels by the Western Blot (WB), and cell proliferation, invasion, and apoptosis by the MTT assay, Transwell assay, and flow cytometry. Dual luciferase report assay was used to determine the relationship between miR-143-3p and CTNND1. In this study, miR-143-3p was lowly expressed in lung cancer and CTNND1 was highly expressed in lung cancer. The overexpression of miR-143-3p inhibited cell proliferation and invasion, promoted cell apoptosis, significantly increased Bax protein expression, and decreased Bcl-2 protein expression. The inhibition of CTNND1 led to opposite biological characteristic in cells. The dual luciferase reporter assay demonstrated that miR-143-3p was a target region of CTNND1. Such results suggest that miR-143-3p can inhibit the proliferation and invasion of lung cancer cells by regulating the expression of CTNND1 and promote the apoptosis of lung cancer cells, sott is expected to be a potential target for lung cancer.  相似文献   

3.
4.
YUE CAO  LIN HU  YISHU TANG 《Biocell》2023,47(7):1537-1548
Backgrounds: Both hepatitis B virus X protein (HBx) and microRNA-221 (miR-221) have been implicated in the development of hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC). The present study demonstrates that HBx promotes HCC cell proliferation via the C-X-C motif chemokine ligand 12-C-X-C chemokine receptor type 4 (CXCL12-CXCR4) axis. We predict that HBx/miR-221-mediated CXCL12/CXCR4 signaling induces NKT cells to promote HBV-related HCC. Methods: After miR-221 mimic, miR-221 mimic negative control, miR-221 inhibitor, miR-221 inhibitor negative control were transfected into cells, the expression of CXCL12 and miR-221 was detected by qPCR and western blot. Then we constructed a stable HBV-HCC cell line. HBV-HCC cells were injected into the nude mice, thus a HBV-HCC mouse model was constructed. Q-PCR and western blot were used to detect the expression of HBx, miR-221, CXCL12 and CXCR4 in tumor tissues. The expression of CXCL12 was detected by immunohistochemistry, and the expression of CXCR4, CD3 and CD56 was detected by immunofluorescence. The levels of CXCL12, IL-2 and TNF-α in serum of mice were detected by ELISA. Sixty-one patients with HBV-related HCC, 61 patients with HBV-related cirrhosis, 61 patients with chronic hepatitis B (CHB) and 30 healthy people were enrolled. CXCL12, cytokine levels, and clinicopathological parameters were tested. Results: Hepatitis B virus X protein upregulates the expression of miR-221 and CXCL12 in lentivirus (LV5)-HBx-transfected HepG2 cells. HBx protein promotes HepG2 cell proliferation in vitro. HBx protein promoted tumor growth via the miR-221/CXCL12/CXCR4 pathway in a mouse tumor model. HBx protein upregulated natural killer T cell expression via the CXCR4/CXCL12 pathway to promote tumor growth. The data demonstrated a positive correlation between CXCL12 concentration with Cre levels and Child-Pugh scores. CXCL12 had an inferior diagnostic efficiency compared to IL-2 and IL-6 for HBV-related HCC. Conclusions: We present evidence that HBx/miR-221-mediated CXCL12/CXCR4 signaling induces NKT cells to promote HBV-related HCC.  相似文献   

5.
FEI CHEN  LIANG WANG  YUHONG LI 《Biocell》2022,46(7):1687-1696
Long noncoding RNAs (lncRNAs) are vital regulators in tumorigenesis and metastasis. However, the pathological role of lncRNAs in hepatocellular carcinoma (HCC) is still unclear. In this study, we filtered out three lncRNAs from The Cancer Genome Atlas (TCGA) data that were screened for basic expression and clinical research. We selected lncRNA-NEAT1 for further study to explore its function in HCC progression and its regulatory mechanism. We identified three differentially expressed lncRNAs (DElncRNAs) in tumor and adjacent normal tissues from the TCGA library using data mining methods: lncRNA-NEAT1, lncRNA-MAGI2-AS3 and lncRNA-HCG11. Their basic expression levels were detected by qPCR. Then, we selected lncRNA-NEAT1 as a potentially important lncRNA to verity its biological function and mechanism in HCC cell lines. lncRNA-NEAT1, lncRNA-MAGI2-AS3 and lncRNA-HCG11 were overexpressed in liver cancer tissues and cell lines. We found that silencing NEAT1 in vitro can inhibit the proliferation of HuH-7 and Li-7 cells, inhibit cell migration, and induce apoptosis as well as significantly increase the level of miR-16-5p. We also confirmed that miR-16-5p has a significant correlation with Bcl-2. When NEAT1 is silenced, the expression of Bcl-2 decreases. Inhibiting miR-16-5p can restore Bcl-2 to its original level. We conclude that miR-16-5p1/lncRNA NEAT1 plays a crucial role in regulating the delivery of Bcl-2 in HCC. Overall, the miR-16-5p/lncRNA-NEAT1/Bcl-2 signaling axis may be a promising target for HCC treatment.  相似文献   

6.
Aim: Gastric cancer (GC) is one of the most common malignant tumors. Chrysophanol has been reported to possess antitumor effects on a variety of cancers; however, its role in GC remains unclear. This study aimed to investigate the effects of chrysophanol on the proliferation, pyroptosis, migration, and invasion of GC cells. Methods: Human GC cell lines MKN 28 and AGS cells were treated with different concentrations of chrysophanol, then cell proliferation, migration, invasion and pyroptosis were determined by CCK-8, colony-forming assay, wound healing assay, Transwell assay, and flow cytometry. Cell migration and invasion were reassessed in these transfected cells following the transfection of nod-like receptor protein-3 (NLRP3) siRNA in MKN 28 and AGS cells. To examine the downstream signaling pathway of the NLRP3 signaling pathway, NLRP3, caspase-1, gasdermin-D, interleukin (IL)-1β, and IL-18 were detected by quantitative real-time-polymerase chain reaction or western blotting. Results: Chrysophanol inhibited the proliferation of GC cells, caused pyroptosis, inhibited cell migration and invasion, and increased the expression of NLRP3 inflammasomes in GC cells. Knockdown of NLRP3 inhibited the effects of chrysophanol on proliferation, pyroptosis, migration, and invasion of GC cells. Chrysophanol plays an anticancer role by enhancing NLRP3. Conclusions: Chrysophanol exerts anti-neoplastic effects in vitro in GC cells by modulating NLRP3, thus highlighting its therapeutic potential in GC.  相似文献   

7.
Xin YANG  Liqun LU  Li HUANG  Jing HE  Jie LV 《Biocell》2020,44(1):101-110
T-cell acute lymphoblastic leukemia (T-ALL) is a hematological tumor caused by the malignant transformation of immature T-cell progenitor cells. Emerging studies have stated that microRNAs (miRNAs) may play key roles in T-ALL progression. This study aimed to investigate the roles of miR-145-3p in T-ALL cell proliferation, invasion, and apoptosis with the involvement of the nuclear factor-kappaB (NF-κB) signaling pathway. T-ALL Jurkat cells were harvested, and the expression of miR-145-3p and NF-κB-p65 was measured. Gain- and loss-of-functions of miR-145-3p and NF-κB-p65 were performed to identify their roles in the biological behaviors of Jurkat cells, including proliferation, apoptosis, and invasion. Consequently, the current study demonstrated that miR-145-3p was downregulated while NF-κB-p65 was up-regulated in Jurkat cells. miR-145-3p directly bound to the 3’ untranslated region of NF-κB-p65. Over-expression of miR-145-3p inhibited Jurkat cell proliferation, invasion, and resistance to apoptosis, while over-expression of NF-κB-p65 presented opposite trends. Co-transfection of miR-145-3p and NF-κB-p65 promoted the malignant behaviors of Jurkat cells compared to miR-145-3p transfection alone, while it reduced these behaviors of Jurkat cells compared to NF-κB-p65 transfection alone. Taken together, this study provided evidence that miR-145-3p could suppress proliferation, invasion, and resistance to the death of T-ALL cells via inactivating the NF- κB signaling pathway.  相似文献   

8.
9.
YUHUA ZOU  LEI ZHANG  XIN ZHONG 《Biocell》2022,46(5):1309-1317
Renal cell carcinoma (RCC) has a poor prognosis due to limited diagnosis and treatment. Thus, it is necessary to find novel prognostic biomarkers and therapeutic targets. The aberrant expression of microRNAs plays an important role in RCC oncogenesis. Tissue inhibitors of metalloproteinase 3 (TIMP3) acts as a downstream target of miR-181b. The aim of this study was to understand the role and molecular mechanism of miR-181b in RCC oncogenesis. The results showed that miR-181b expression was significantly higher in RCC tumour tissues, especially in those with significant invasion or metastasis. miR-181b overexpression promoted proliferation and migration of the RCC cell line 786-O, while miR-181b knockdown had the opposite effect. In addition, miR-181b was inversely correlated with TIMP3 expression in RCC tumour tissues. miR-181b overexpression reduced TIMP3 expression in RCC cell line 786-O or OS-RC-2, while miR-181b knockdown had the inverse effect. Mechanistically, a luciferase reporter assay confirmed the binding sites of miR-181b on the 3’-UTR of TIMP3, confirming the targeting effect of miR-181b on TIMP3. Overall, miR-181b promotes the development and progression of RCC by targeting TIMP3 expression, indicating the potential use of miR-181b in the diagnosis and treatment of RCC.  相似文献   

10.
Pancreatic cancer is one of the most aggressive malignancies with poor prognosis and high mortality. Recent studies showed that microRNAs are dysregulated and involved in the initiation and progression of pancreatic cancer. In this study, we found that miR-708 was significantly downregulated in pancreatic cancer tissues and cell lines. Lentivirus-mediated overexpression of miR-708 could significantly inhibit the proliferation and invasion, while enhanced chemosensitivity to gemcitabine in both Panc-1 and SW1990 cells. Luciferase reporter assay showed that miR-708 bound the 3’-untranslated region of survivin and suppressed the expression of survivin in pancreatic cancer cells. In pancreatic cancer tissues, survivin protein was highly expressed and negatively correlated with miR-708 expression. Furthermore, the restoration of survivin expression could partially antagonize proliferation inhibition and apoptosis induction by miR-708 in pancreatic cancer cells. The Panc-1 cells with overexpression of miR-708 also showed decreased proliferation capability in nude mouse model compared with parental cells. In conclusion, our results suggest that miR-708 inhibits pancreatic cancer and could be a novel potential candidate to treat pancreatic cancer.  相似文献   

11.
Background: This study was designed to investigate the roles of RASAL2 in cervical cancer (CC). Methods: Fifty-four CC tissues and 33 adjacent tissues were obtained from CC patients admitted to our hospital between March 2012 and June 2014. Real-time polymerase chain reaction and western blotting were performed to analyze the expression of RASAL2 mRNA and protein in these tissues, CC cell lines, and normal cervical cells. Over-expression and silencing of RASAL2 were induced after transfection, and the migration, invasion, and proliferation of the CC cell lines were examined. Results: RASAL2 mRNA and protein expressions were significantly down-regulated in CC tissues and cell lines than in adjacent tissues and normal cervical cells, respectively. While low RASAL2 expression correlated with advanced stage and metastasis of CC, its over-expression significantly inhibited proliferation and metastasis of CC cells and induced apoptosis. Under in vitro conditions, silencing of RASAL2 expression could significantly increase the proliferation, invasion, and migration of CC cells. Conclusion: RASAL2 functioned as a tumor suppressor in CC, and was down-regulated in CC tissue samples and cell lines. tumor suppressor in CC, and was down-regulated in CC tissue samples and cell lines.  相似文献   

12.
Tumor progression is usually characterized by proliferation, migration, and angiogenesis, which is essential for supplying both nutrients and oxygen to the tumor cells. Therefore, targeting angiogenesis has been considered a promising therapeutic strategy for cancer prevention and treatment. In the present study, we demonstrated that in addition to suppressing lung cancer cell proliferation and migration in vitro, 10-hydroxycamptothecin (10-HCPT) is also capable of inhibiting angiogenesis in vivo with a miR-181a-dependent manner. Mechanistically, by upregulating miR-181a, which in turn downregulating FOXP1, 10-HCPT can inhibit the PI3K/Akt/ERK signaling pathwaymediated angiogenesis. Furthermore, reduced levels of miR-181a have been found in both lung cancer cell lines and xenograft with concurrently elevated levels of FOXP1, VEGF, bFGF, and HDGF. Consistent with the findings from the in vitro experiments, miR-181a impairs neovascularization in our xenograft model. In summary, our findings have not only established the anti-oncogenic role of miR-181a in lung cancer angiogenesis but also suggest that 10-HCPT could be a potential therapeutic reagent for lung cancer treatment.  相似文献   

13.
Tong MA  Fafen WANG  Xiaohui WANG 《Biocell》2019,43(3):191-198
Cervical cancer (CC), has been identified as one of the most frequent malignant tumors all over the world, with high mortality in females. A growing number of investigations have confirmed that long noncoding RNAs (lncRNAs) play a crucial role in the progression of multiple cancers. Nonetheless, the biological function and regulatory mechanism of LINC01772 in CC haven’t been explored so far. In this study, LINC01772 expression was found to be upregulated in tissues and cells of CC. Knocking down LINC01772 suppressed CC cell proliferation, migration and epithelial-mesenchymal transition (EMT) process. Through molecular mechanism assays, LINC01772 was verified to be bound with miR-3611 and LINC01772 acted as a sponge for miR-3611. Zinc finger E-box binding homeobox 1 (ZEB1) was a downstream target gene of miR-3611. ZEB1 was negatively regulated by miR-3611 but positively regulated by LINC01772. Rescue assays confirmed that miR-3611 inhibitor or ZEB1 overexpression offset the inhibitive effect of LINC01772 depletion on cell proliferation, migration and EMT process in CC. In a word, our study validated that LINC01772 promoted cell metastasis and EMT process in CC by sponging miR-3611 to upregulate ZEB1 expression, indicating that LINC01772 could serve as a new therapeutic target for patients with CC.  相似文献   

14.
15.
16.
XUE JIANG  HONG ZHANG 《Biocell》2022,46(3):785-794
Posterior capsular opacification (PCO) is linked to the pathological process of lens epithelial cells, which includes proliferation, migration, and epithelial-mesenchymal transition (EMT). Our goal was to investigate whether long noncoding RNA (lncRNA) XIST contributes to EMT via targeting miR-124/Slug axis in TGF-β2-induced SRA01/04 cells. EMT was induced by stimulating SRA01/04 cells with 10 ng/mL TGF-β2 for 24 h, and PCO microenvironment was simulated. The expressions levels of lncRNA XIST, miR-124, and Slug were measured by real-time polymerase chain reaction (RT-PCR) and western blot. The role and mechanism of lncRNA XIST in promoting EMT of TGF-β2-treated SRA01/04 cells were investigated by using cell transfection, cell counting kit-8 (CCK-8), immunofluorescence staining, transwell assay, wound-healing assay, RT-PCR, western blot and dual-luciferase reporter assay. The expression of Slug and lncRNA XIST was markedly increased, while miR-124 was downregulated in TGF-β2-treated SRA01/04 cells compared with the control group. Knockdown of lncRNA XIST reduced EMT, migration, and cell viability in TGF-β2-induced SRA01/04 cells; moreover, it adversely modulated miR-124 and adjusted the expression of Slug in SRA01/04 cells, while these effects were diminished by co-transfection with AMO-miR-124. Our data demonstrated that lncRNA XIST functioned as a competitive endogenous RNA (ceRNA) of miR-124 to modulate the expression level of Slug, thereby modulating EMT, migration, and cell viability in SRA01/04 cells. In conclusion, lncRNA XIST has a crucial role in promoting TGF-β2-induced EMT via modulating the miR-124/Slug axis in SRA01/04 cells, and it may provide a novel therapeutic option for PCO treatment.  相似文献   

17.
Background: Long-chain non-coding RNA (lncRNA) LINC00609 is a potential tumor suppressor, but the mechanism of action in non-small cell lung cancer (NSCLC) is yet to be understood.Objectives: The effects of LINC00609 on A549 cell proliferation, apoptosis, and cell cycle arrest were investigated. Methods: The LINC00609 levels in NSCLC and normal tissues were analyzed by bioinformatics. Expressions of LINC00609, miR-128-3p, and Rho family GTPase 3 (RND3) in NSCLC cells (A549) were determined by qRT-PCR. Bioinformatics analysis predicted target genes and dual-luciferase reporter assays to ensure that LINC00609 targeted miR-128-3p and miR-128-3p targeted RND3. The proliferation of cells was determined using EDU and CCK-8. Flow cytometry was used to evaluate cell apoptosis rate and cell cycle. The western blotting assay identified proteins related to proliferation and apoptosis. Results: In NSCLC tissues, LINC00609 was expressed in low levels, while its high expression was associated with a higher survival rate. LINC00609 affected cell proliferation, apoptosis, cell cycle arrest, and expression of related proteins. Dual-luciferase reporter assay showed that LINC00609 binds specifically to miR-128-3p, and miR-128-3p binds to RND3. MiR-128-3p overexpression could neutralize the effects of LINC00609. A siRNA targeting RND3 could reverse the effect of the miR-128-3p inhibitor. Silencing RND3 resulted in a decrease in apoptosis rate and the number of cells in the S-phase and an increase in the number of cells in the G1-phase. Furthermore, phosphorylation levels of the AKT protein and mTOR protein, and Bcl2 expression, increased; however, the expression of RND3, Bax, and caspase3 decreased. Conclusions: LINC00609 regulated miR-128-3p/RND3 axis to modulate A549 cell proliferation, apoptosis, and cell cycle arrest. In the case of NSCLC, LINC00609 could be a potential target for therapy.  相似文献   

18.
Recent studies suggested that LIM and SH3 protein 1 (LASP-1) is a promising therapeutic target for renal cell cancer (RCC). This study aimed to explore the role of LASP-1 in RCC. For this purpose, LASP-1 expression in RCC tissues was analyzed by immunohistochemistry and Western blot analysis. Cell proliferation, migration, invasion, and gene expression were detected by CCK-8 assay, Transwell assay, and Western blot analysis. The results showed that LASP-1 was highly expressed in RCC, and its expression level,t was positively correlated with lymph node metastasis and tumor, nodes, and metastases (TNM) stage. The knockdown of LASP-1 expression significantly inhibited the proliferation of RCC cells, increased the apoptosis rate, and inhibited RCC cell invasion and migration by inhibiting epithelial–mesenchymal transition. We conclude that LASP-1 promotes RCC progression and metastasis and is a promising therapeutic target for RCC.  相似文献   

19.
Xiuchun ZHANG 《Biocell》2019,43(4):313-319
To investigate the effects of polydatin on the proliferation, migration, and invasion of ovarian cancer, the change of proliferative ability, migration ability, and invasive ability of human ovarian cancer cell OVCAR-3, A2780, and HO-8910 was detected by using polydatin and up-regulating PI3K. The anticancer activity and mechanism of polydatin in ovarian cancer were analyzed. Polydatin could effectively inhibit the proliferation, migration, and invasion of OVCAR-3, A2780, and HO-8910, and inhibit the expression of PI3K protein. After the expression level of PI3K protein was up-regulated, the inhibitory effect of polydatin on the proliferative ability, migration ability, and invasive ability of OVCAR-3, A2780, and HO-8910 significantly decreased, suggesting that PI3K was the target of polydatin. Therefore, we concluded that polydatin could inhibit the proliferation, migration, and invasion of ovarian cancer cells by inhibiting the expression of PI3K protein, which provides an experimental basis for polydatin in the treatment of ovarian cancer.  相似文献   

20.
Peroxiredoxin 1 (PRDX1) participates in tumor cell proliferation, apoptosis, migration, invasion, and the epithelial-to-mesenchymal transition (EMT). This study aimed to investigate the effect of PRDX1 on the EMT of airway epithelial cells stimulated with lipopolysaccharide (LPS) and transforming growth factor-beta 1 (TGF-β1). PRDX1 overexpression significantly increased the proliferation and migration of human bronchial epithelial (BEAS-2B) cells, reduced cell apoptosis (p < 0.01), and induced EMT and collagen deposition by upregulating the expression of the matrix metallopeptidase (MMP)2, MMP9, α-smooth muscle actin (α-SMA), N-cadherin, vimentin and twist proteins and inhibiting E-cadherin expression (p < 0.05). PRDX1 overexpression promoted TGF-β1-mediated inhibition of cell proliferation and migration and significantly enhanced the TGF-β1-induced EMT and collagen synthesis (p < 0.05). Knockdown of PRDX1 inhibited cell proliferation, migration, EMT, and collagen synthesis (p < 0.01), reversed LPS-mediated inhibition of cell proliferation and migration, and significantly suppressed LPS-induced EMT and collagen synthesis (p < 0.01). The result indicating that PRDX1 may be involved in LPS/TGF-1-induced EMT and collagen synthesis in human bronchial epithelial cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号