共查询到12条相似文献,搜索用时 0 毫秒
1.
2.
A famous psychologist or researcher, Daniel Goleman, gave a theory on the importance of Emotional Intelligence for the success of an individual’s life. Daniel Goleman quoted in the research that “The contribution of an individual’s Intelligence Quotient (IQ) is only 20% for their success, the remaining 80% is due to Emotional Intelligence (EQ)”. However, in the absence of a reliable technique for EQ evaluation, this factor of overall intelligence is ignored in most of the intelligence evaluation mechanisms. This research presented an analysis based on basic statistical tools along with more sophisticated deep learning tools. The proposed cross intelligence evaluation uses two different aspects which are similar, i.e., EQ and SQ to estimate EQ by using a trained model over SQ Dataset. This presented analysis ensures the resemblance between the Emotional and Social Intelligence of an Individual. The research authenticates the results over standard statistical tools and is practically inspected by deep learning tools. Trait Emotional Intelligence Questionnaire-Short Form (TEIQue-SF) and Social IQ dataset are deployed over a Multi-layered Long-Short Term Memory (M-LSTM) based deep learning model for accessing the resemblance between EQ and SQ. The M-LSTM based trained deep learning model registered, the high positive resemblance between Emotional and Social Intelligence and concluded that the resemblance factor between these two is more than 99.84%. This much resemblance allows future researchers to calculate human emotional intelligence with the help of social intelligence. This flexibility also allows the use of Big Data available on social networks, to calculate the emotional intelligence of an individual. 相似文献
3.
Saeed Masoud Alshahrani Fatma S. Alrayes Hamed Alqahtani Jaber S. Alzahrani Mohammed Maray Sana Alazwari Mohamed A. Shamseldin Mesfer Al Duhayyim 《计算机、材料和连续体(英文)》2023,74(2):3085-3100
Nowadays, Internet of Things (IoT) has penetrated all facets of human life while on the other hand, IoT devices are heavily prone to cyberattacks. It has become important to develop an accurate system that can detect malicious attacks on IoT environments in order to mitigate security risks. Botnet is one of the dreadful malicious entities that has affected many users for the past few decades. It is challenging to recognize Botnet since it has excellent carrying and hidden capacities. Various approaches have been employed to identify the source of Botnet at earlier stages. Machine Learning (ML) and Deep Learning (DL) techniques are developed based on heavy influence from Botnet detection methodology. In spite of this, it is still a challenging task to detect Botnet at early stages due to low number of features accessible from Botnet dataset. The current study devises IoT with Cloud Assisted Botnet Detection and Classification utilizing Rat Swarm Optimizer with Deep Learning (BDC-RSODL) model. The presented BDC-RSODL model includes a series of processes like pre-processing, feature subset selection, classification, and parameter tuning. Initially, the network data is pre-processed to make it compatible for further processing. Besides, RSO algorithm is exploited for effective selection of subset of features. Additionally, Long Short Term Memory (LSTM) algorithm is utilized for both identification and classification of botnets. Finally, Sine Cosine Algorithm (SCA) is executed for fine-tuning the hyperparameters related to LSTM model. In order to validate the promising performance of BDC-RSODL system, a comprehensive comparison analysis was conducted. The obtained results confirmed the supremacy of BDC-RSODL model over recent approaches. 相似文献
4.
为了解决人们在强噪声环境下,通过空气途径传递的语音信号会严重失真的问题,提出了一种基于深层双向长短期记忆-深度卷积神经网络(Deep Bidirectional Long and Short Term Memory-Deep Convolutional Neural Network,DBLSTM-DCNN)的骨导语音转... 相似文献
5.
S. Karthik Robin Singh Bhadoria Jeong Gon Lee Arun Kumar Sivaraman Sovan Samanta A. Balasundaram Brijesh Kumar Chaurasia S. Ashokkumar 《计算机、材料和连续体(英文)》2022,72(1):243-259
Data is always a crucial issue of concern especially during its prediction and computation in digital revolution. This paper exactly helps in providing efficient learning mechanism for accurate predictability and reducing redundant data communication. It also discusses the Bayesian analysis that finds the conditional probability of at least two parametric based predictions for the data. The paper presents a method for improving the performance of Bayesian classification using the combination of Kalman Filter and K-means. The method is applied on a small dataset just for establishing the fact that the proposed algorithm can reduce the time for computing the clusters from data. The proposed Bayesian learning probabilistic model is used to check the statistical noise and other inaccuracies using unknown variables. This scenario is being implemented using efficient machine learning algorithm to perpetuate the Bayesian probabilistic approach. It also demonstrates the generative function for Kalman-filer based prediction model and its observations. This paper implements the algorithm using open source platform of Python and efficiently integrates all different modules to piece of code via Common Platform Enumeration (CPE) for Python. 相似文献
6.
目的针对机械工程中软钢材料在大塑性拉伸载荷下力学特性分析的问题,提出一种基于深度学习的分析方法来预测其力学特性。方法首先对软钢材料不同台阶角度展开拉伸实验,并将采集到的实验数据利用智能技术进行预测分析。实验模型设计为双层结构,第1层结构采用共享全连接层特征输入,第2层使用极端随机树和长短时记忆网络做联合深度训练,并对训练结果经过激活函数计算后统一输出。采用联合训练模型在实验测试集上能较好地反映出应变与应力的变化趋势、速度和数值关系。结果实验结果显示,利用联合训练模型比单一ET和LSTM预测技术在拟合效果上分别提高了28.3%和63.5%。结论利用新模型取得较好的预测效果,这为分析金属阻尼器大塑性拉伸载荷下软钢材料力学特性的分析提供了重要的参考。 相似文献
7.
目的 节省电流体喷射打印精度预测的时间和解决电流体工艺参数的选择问题,达到提高电流体打印的质量和效率的目的。方法 为了对电流体喷射打印精度进行预测,提出有限元模型与机器学习相结合的方法。基于线性回归、支持向量回归和神经网络等机器学习算法建立4种参数与射流直径的关系模型。结果 算法结果表明:支持向量回归和神经网络预测模型的决定系数R2能达到0.9以上,表示模型可信度高;支持向量回归和神经网络预测模型指标都比线性回归预测模型的小。结论 机器学习算法可对电喷印打印精度进行有效预测,预测效率提高了十几倍,节省了精度预测的时间。 相似文献
8.
Many traditional approaches for performance degradation assessment of rolling bearings, using sensor data, make assumptions about how they degrade or fault evolve. However, the sequential sensor data cannot be directly taken as input in the traditional models since the data always contain noise and change in length. To solve these problems, a convolutional neural network and deep long-short term memory (CNN-DLSTM) based architecture is proposed to obtain an unsupervised H-statistic for performance degradation assessment of rolling bearing using sensor time-series data. Firstly, a CNN is applied to extract local abstract features from raw sensor data. Secondly, a deep LSTM is explored to extract temporal features. CNN-DLSTM is trained to reconstruct the time-series sensor signal reflecting the health condition of rolling bearing. The D- and Q-statistic are used to compute H-statistic which is then used for performance degradation assessment. The proposed approach is evaluated on an experiment with rolling bearings and the results are presented on a public dataset of rolling bearing, verifying that the proposed approach outperforms several state-of-the-art methods. 相似文献
9.
Hongjun FU Shaoxuan ZHU Buhua WANG Yan XIE Haoqing XIONG Xiaojun TANG Xiaoyong DU Chenghao LI Xiaomeng LI 《发电技术》2024,45(2):353-362
10.
结合深度学习在图像识别领域的优势,将卷积神经网络(CNN)应用于有限元代理模型,预测了平面随机分布短纤维增强聚氨酯复合材料的有效弹性参数,并针对训练过程出现的过拟合,提出了一种数据增强的方法。为验证该代理模型的有效性,比较了其与传统代理模型在预测有效杨氏模量和剪切模量上的精度差异。在此基础上结合蒙特卡洛法利用卷积神经网络代理模型研究了材料微几何参数不确定性的误差正向传递。结果表明:相对于传统代理模型,卷积神经网络模型能更好地学习图像样本的内部特征,得到更加精确的预测结果,并在训练样本空间外的一定范围内可以保持较好的鲁棒性;随着纤维长宽比的增大,微几何参数的不确定性对材料有效性能预测结果会传递较大的误差。 相似文献
11.
风力发电过程具有较强的随机性,导致风力发电功率的预测准确度不高。针对上述问题,提出了一种融合深度学习算法的风力发电功率预测方法。以历史风力发电功率数据作为输入,建立风力发电功率预测模型,实现对未来一个时间刻度的风力发电功率预测。算例结果表明,与传统时序预测方法相比,基于长短期记忆神经网络的风力发电功率预测结果在各项指标中误差更小,验证了上述方法在风力发电功率预测中的可行性和有效性,提升了风力发电功率预测的准确性。 相似文献
12.
《Current Opinion in Solid State & Materials Science》2023,27(4):101091
The solution of instrumented indentation inverse problems by physically-based models still represents a complex challenge yet to be solved in metallurgy and materials science. In recent years, Machine Learning (ML) tools have emerged as a feasible and more efficient alternative to extract complex microstructure-property correlations from instrumented indentation data in advanced materials. On this basis, the main objective of this review article is to summarize the extent to which different ML tools have been recently employed in the analysis of both numerical and experimental data obtained by instrumented indentation testing, either using spherical or sharp indenters, particularly by nanoindentation. Also, the impact of using ML could have in better understanding the microstructure-mechanical properties-performance relationships of a wide range of materials tested at this length scale has been addressed.The analysis of the recent literature indicates that a combination of advanced nanomechanical/microstructural characterization with finite element simulation and different ML algorithms constitutes a powerful tool to bring ground-breaking innovation in materials science. These research means can be employed not only for extracting mechanical properties of both homogeneous and heterogeneous materials at multiple length scales, but also could assist in understanding how these properties change with the compositional and microstructural in-service modifications. Furthermore, they can be used for design and synthesis of novel multi-phase materials. 相似文献