首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 234 毫秒
1.
于洋  刘琦  吕静  罗聃  彭勃 《洁净煤技术》2021,27(2):69-78
化石燃料的使用是全球气候变暖的主要原因,二氧化碳捕集、利用及封存(CCUS)技术能够有效减少碳排放,缓解气候变化压力。化学吸收法是CO2捕集的重要方法之一,具有分离效率高、成本低等优点,但存在解吸过程中消耗能量较多、长期使用造成设备腐蚀性等问题。利用碳酸酐酶(CA)强化化学方法吸收CO2,可以提高CO2吸收效率,有效解决传统工艺中的热能损失,逐渐成为CO2捕集与封存研究中的热点。但CA自身热稳定性低、可重复性差,需对其进行固定化以提高稳定性和活性。重点介绍了CA的固定化方法及常用载体材料,总结了CA在强化CO2捕集中的作用机理,讨论了其在CO2捕集中的应用,并对该技术的未来发展方向作出了展望。固定化载体与方法会影响固定化酶的性质,故CA在固定化时要选择合适的载体与方法。CA固定化方法包括吸附法、包埋法、共价结合法和交联法4种,各有优劣,应根据酶所应用的领域来选择合适的固定化方法。常用固定化载体有天然高分子、无机载体材料等,选择时应综合考虑载体的理化性质和工业应用能力。CO2捕集过程中,CA主要通过促进化学溶剂吸收CO2和诱导CO2矿化生成碳酸钙两方面强化捕集效率。未来研究方向应集中于开发具有更高活性和稳定性的新型CA、制备廉价高性能载体材料和进一步探究CA的内在因素和外界条件对其工业应用产生的阻碍。  相似文献   

2.
史红玲  王瑶  袁书玮  姚伦广  唐存多  薛闯 《精细化工》2023,(10):2089-2097+2206
CO2的还原和资源化利用是缓解温室效应的重要手段。生物催化剂对反应和底物具有高选择性,因此被用于构建高效的CO2还原系统。其中,甲酸脱氢酶(FDH),特别是某些烟酰胺腺嘌呤二核苷酸(NAD+)依赖型/金属辅因子(W或Mo)的甲酸脱氢酶,能够可逆地将CO2还原成甲酸盐。该文首先介绍了甲酸脱氢酶的特性及分类,其次综述了CO2还原用甲酸脱氢酶的活性位点及催化机制、FDH的分子改造、全细胞生物催化CO2还原为甲酸盐的最新进展,为CO2还原用生物催化剂的研究提供了启示,为以CO2为原料构建可行的CO2还原系统来生产增值的燃料和化学品提供了理论基础。  相似文献   

3.
化石能源的大量燃烧在推进人类工业化进程的同时也使当今世界面临愈发严峻的气候变化和环境问题。为降低大气中日益增长的CO2浓度并实现《巴黎协定》所设定的2℃目标,CO2捕集技术得到了越来越广泛的关注和研究,其中部分技术已实现了小规模工业化。在持续推进节能减排的背景下,通过CO2捕集对现有工业过程进行强化是CO2捕集技术发展的一个新兴方向,如此不但可提高原有过程的效率和产品品质,还可大幅减少其碳排放,是具有应用前景的技术路线。本文从CO2捕集的主流技术出发,介绍了面向CO2捕集的过程强化技术,重点介绍CO2捕集强化的蒸汽重整制氢过程、水气变换过程和生物质气化过程,以及耦合CO2捕集的CO2加氢过程、CH4干重整过程和化学链燃烧过程,最后还对捕集后CO2的利用与转化技术进行了简介。  相似文献   

4.
“碳达峰、碳中和”是我国统筹国内外局势做出的重大战略决策,是着力解决资源环境约束突出问题、构建人类命运共同体的庄严承诺。碳捕集与封存技术(CCS)作为传统的CO2治理方法存在潜在的泄漏风险且会造成巨大的经济负担。近年来,碳捕集、利用与封存技术(CCUS)由于可将捕集的CO2转化为附加值产品以实现资源化利用,被认为是CCS的有效替代和补充方案。发展高效的CO2资源化技术是CCUS的关键。酶催化技术作为典型的绿色生物制造技术在CO2资源化利用领域受到广泛关注。构建以酶催化为基础的耦合催化系统为CO2到高值化学品或燃料的资源化转化创造了丰富的路径网络。综述了近年来基于生物酶介导的“酶+X”耦合催化CO2资源化转化系统,包括“酶+酶”耦合催化系统、“酶+化学”耦合催化系统、“酶+光”耦合催化系统和“酶+电”耦合催化系统。对不同耦合催化系统的结构进行解析,明确了系统特点及催化反应过程。在结构解析的基础上讨论了系统模块设计与性能强化的关键。阐述了“酶+X”耦合催化系统...  相似文献   

5.
靳志唯  刘利 《安徽化工》2024,(1):19-21+25
离子液体因其可调节的结构具有独特的性质,同时具有低挥发性、良好的热稳定性和化学稳定性等特点,广泛应用于吸收CO2和催化CO2转化领域。综述了离子液体与CO2之间的相互作用及其在光催化转化、电催化转化、光电催化转化及光热催化转化CO2领域的研究进展,最后对离子液体未来的发展进行了展望。  相似文献   

6.
离子液体和低共熔溶剂因其良好的溶解与催化能力,可催化CO2转化为高附加值化学品。本文综述了离子液体和低共熔溶剂催化CO2转化为有机碳酸酯的研究进展,分析了CO2与醇生成直链碳酸酯以及与环氧化物生成环状碳酸酯的反应机理;介绍了传统型、质子型、功能化离子液体以及由氯化胆碱、季铵盐与季膦盐、有机碱等作为氢键受体组成的低共熔溶剂,及其在CO2转化为直链和环状碳酸酯反应中的催化性能;总结了此两类反应中离子液体和低共熔溶剂设计的基本规律;指出了CO2转化反应中离子液体与低共熔溶剂存在的催化效率低、稳定性不高、后续分离困难等问题,后续研究可结合计算机辅助设计方法,探索更合适的阴阳离子/氢键供受体组合,获得更高效的催化体系。  相似文献   

7.
新型吸附材料对CO2进行吸附分离并催化转化为高附加值产品,具有绿色清洁的优点,是未来全球应对气候变化的重要技术选择之一,但在复杂环境CO2的捕集过程中存在无法高效吸附分离以及成本较高的问题。本文简述了CO2吸附材料最新研究进展以及资源化利用的有效途径,主要介绍了金属有机骨架(MOF)、分子筛、多孔碳材料、共价有机骨架(COF)等吸附材料的物化性质等对吸附量和选择性的影响,从催化转化的角度对合成甲酸、甲醇以及烯烃等小分子化合物进行了论述。基于含CO2废气的综合治理问题,探讨了将钢铁行业中的烟道气以及高炉煤气等进行加氢的可行性,在CO2捕集和转化的科学技术进步上开拓了新思路,对CO2更加清洁高效利用,实现低碳化、智能化多能融合进行展望。  相似文献   

8.
二氧化碳(CO2)捕集、利用和储存(CCUS)在全球能源结构转型中是一种极具潜力的策略,能够实现能源供给、基础原料产出以及限制气候变化。多孔有机聚合物(POPs)具有高CO2吸附容量和吸附选择性、突出的结构特性以及优异的化学可调控性,其作为极具潜力的材料广泛应用于催化CO2参与的有机反应中。其中,CO2与环氧化物环加成生成环状碳酸酯的反应具有100%的原子经济性,且其产物也极具工业价值。本文基于CO2环加成反应催化机制,从催化剂的合成方法、结构性质与组成特性角度出发,综述了POPs在CO2/环氧化物环加成反应的研究进展,包括金属配合物类、氢键供体类、离子液体类、金属配合物/离子液体和氢键供体/离子液体等有机多孔聚合物体系。通过阐述POPs在催化CO2制备高附加值环状碳酸酯反应中的研究现状和发展趋势,为POPs的开发与应用以及CO2综合利用的工业化探索提供具有建设性的指导意见。  相似文献   

9.
利用生物酶降解建筑装修污染物甲醛具有温和及环保等特点而备受关注,但仅通过甲醛脱氢酶(FADH)催化甲醛为甲酸具有效率低及产生甲酸污染等系列问题。因此本研究采用大肠杆菌分别异源表达密码子优化的甲醛脱氢酶和甲酸脱氢酶基因。结果显示成功表达且纯化出具有活性的FADH和甲酸脱氢酶(FDH),进一步发现在FADH降解甲醛体系中加入FDH将甲酸进一步转化为无害的CO2后甲醛降解效率可提高5.8倍,为“绿色”治理甲醛污染提供了可行性较高的方案。  相似文献   

10.
开发与应用CO2捕集-加氢转化一体化技术是应对当前全球气候变化危机、实现“双碳”目标的重要途径之一。其中具有吸附和催化组分的双功能材料研发与优化是技术核心。系统总结了国内外主要科研机构对应用于CO2捕集原位甲烷化和原位逆水煤气变换这2类主要CO2捕集-加氢转化一体化技术双功能材料的主要工作,包括合成方法、吸附性能、反应动力学、促进机理、失活机理和应用模式等方面,并详细介绍了国内外主要科研机构在CO2捕集-加氢转化一体化方面取得的最新进展。DFM是兼具催化和吸附组分的复合材料,在催化组分选择上,贵金属催化剂虽然活性高,但成本昂贵,Ni基催化剂成本较低,但还原性较差、在含氧气氛下易失活;在吸附组分选择上,金属氧化物(如CaO、MgO)和碱金属碳酸盐(如Na2CO3、K2CO3)是具有潜力的吸附组分,特别是MgO和CaO因其理论吸附量高而被视为最有前景的吸附组分,尽管面临实际吸附量不理想和循环稳定性差的挑战。目前研究主...  相似文献   

11.
由于二氧化碳(CO2)过度排放导致全球变暖日益严峻,发展零碳技术已成为人类社会面向可持续发展的战略选择。将CO2捕集并转化为高附加值化学和能源产品,可以优化化石能源为主体的能源结构、有效缓解环境问题,并实现碳资源的充分利用,是一项可以大规模实现低碳减排的技术。本文重点介绍了CO2高效利用新途径,通过二氧化碳-合成气-高附加值化学品的产品工艺路线,实现CO2的资源化利用。对比综述了热催化法、电催化法和光催化法高效转化合成气的最新进展,总结了热、电、光催化制备合成气过程中催化剂的设计原理和方法以及目前工业化应用前景;简单概述了合成气作为重要平台分子,进一步通过费托合成路线或接力催化路线转化为低碳烯烃和液态燃料或芳烃等化学品过程中催化剂设计研究进展。最后,总结了大规模工业化CO2转化为合成气及高附加值产品过程催化剂设计和反应器优化的技术难题,并对未来CO2高效转化利用方向进行了展望。同时指出目前各技术还普遍存在反应机理不清晰、催化剂成本高以及缺乏大规模合成等问题,未来开发出高效、高活性、低成本且稳定的催化剂是各技术推广应用的关键。  相似文献   

12.
雷婷  喻树楠  周昶安  宋磊  马奎  李子鹏  岳海荣 《化工进展》2022,41(12):6213-6225
吸附法碳捕集技术是实现工业过程或大气中CO2分离与脱除的重要途径之一,高性能吸附剂的开发是该技术的关键。固体胺吸附剂由于其优异的CO2吸附量、选择性以及较低的再生能耗,近年来受到了广泛的关注,但用于工业的成型吸附剂仍面临机械强度低、稳定性差和胺流失严重等关键难题,难以在工业中大范围的推广应用。本文分析了固体胺成型吸附剂制备面临的主要难题,重点总结了近年来国内外吸附剂成型技术的研发进展,并对固体胺工业吸附剂的发展方向进行了展望。未来固体胺吸附法碳捕集技术的研发重点在于立足吸附反应机理和工业烟气的特性,创新成型固体胺吸附剂制备技术,提升吸附剂的CO2吸附量、胺效率、机械与循环稳定性,研发低能耗的配套吸附工艺和核心装置。  相似文献   

13.
相宏伟  杨勇  李永旺 《化工进展》2022,41(3):1399-1408
碳中和目标的达成将对我国煤化工产业的发展产生深刻的影响。本文分析了煤炭消费与煤化工的CO2排放情况及煤化工在国家经济中的作用,指出碳减排技术与煤化工工艺耦合是实现煤化工碳减排与可持续发展的关键,现实地选择优化产业结构与提高能量利用效率的措施可明显但有限地降低CO2排放量,认为要实现煤化工亿吨级规模的碳减排必须采用绿电绿氢、碳捕获与封存/碳捕获利用与封存(CCS/CCUS和CO2)资源化利用技术。文中评述了近年来绿电绿氢、CCS/CCUS和CO2资源化利用技术应用的主要进展,指出2030年碳达峰前这些碳减排技术将处于关键的示范考验期,能否成熟可靠将决定之后的煤化工发展走向,同时预测氢冶金与绿氨合成示范技术的推广应用将可能导致煤化工产业格局的重大变化。最后基于空气直接捕集CO2技术与光电催化CO2转化或模拟光合反应的研究进展,设想了未来可能呈现的零碳化工体系。  相似文献   

14.
Carbonic anhydrase (CA) as a typical metalloenzyme in biological system can accelerate the hydration/dehydration of carbon dioxide (CO2, the major components of greenhouse gases), which performer with high selectivity, environmental friendliness and superior efficiency. However, the free form of CA is quite expensive (~RMB 3000/100 mg), unstable, and non-reusable as the free form of CA is not easy for recovery from the reaction environment, which severely limits its large-scale industrial applications. The immobilization may solve these problems at the same time. In this context, many efforts have been devoted to improving the chemical and thermal stabilities of CA through immobilization strategy. Very recently, a wide range of available inorganic, organic and hybrid compounds have been explored as carrier materials for CA immobilization, which could not only improve the tolerance of CA in hazardous environments, but also improve the efficiency and recovery to reduce the cost of large-scale application of CA. Several excellent reviews about immobilization methods and application potential of CA have been published. By contrast, in our review, we stressed on the way to better retain the biocatalytic activity of immobilized CA system based on different carrier materials and to solve the problems facing in practical operations well. The concluding remarks are presented with a perspective on constructing efficient CO2 conversion systems through rational combining CA and advanced carrier materials.  相似文献   

15.
因电催化二氧化碳还原反应(CO2 reduction reaction,CO2RR)助于降低大气二氧化碳浓度缓解环境问题,还可以生产高附加值化学品,引起了广泛关注。甲酸盐作为二氧化碳电还原的重要产物之一,在化工、燃料电池等领域广泛应用。铜基硫族化合物(CuxS)由于价格便宜、催化性能优异等优点有着广阔的应用前景,基于此研究者们在纳米结构调控、电解液优化和反应气组分控制等方面展开了大量研究以提升其在电催化CO2RR中的催化活性和甲酸盐产物选择性。主要从催化剂结构设计、催化影响要素、催化反应机理等多角度综述了近期CuxS在电催化CO2RR领域的研究进展,提出了CuxS在CO2RR领域中主要面临的挑战;展望了CuxS族催化剂作为高活性、高稳定性二氧化碳电还原催化剂的发展前景。  相似文献   

16.
提出了基于CaO的钙循环捕集CO2与CaO/Ca(OH)2体系热化学储热耦合新工艺,在双固定床反应器上,研究了循环捕集CO2中煅烧条件和碳酸化条件对CaO储热性能的影响,探究CaO循环捕集CO2过程和循环水合/脱水储热过程的相互作用。研究表明,多次循环碳酸化/煅烧捕集CO2后CaO仍具有较高储热性能,10次循环捕集CO2后再经10次储热循环,CaO水合转化率可达0.66mol/mol。与苛刻煅烧条件相比,温和煅烧条件下经历多次循环捕集CO2后CaO的储热性能更高。在碳酸化气氛中加入水蒸气对经历多次循环捕集CO2后CaO储热性能的影响不大。钙循环捕集CO2过程和水合/脱水循环储热过程能够相互促进。该工艺有望同时实现CO2捕集和储热,具有一定的应用前景。  相似文献   

17.
许文娇  成怀刚  程芳琴 《化工学报》2021,72(12):6049-6061
化工燃料在提供能源过程中产生的低浓度CO2废气可以被工业废液吸收。结合当前研究现状,介绍了用工业废液吸收低浓度CO2废气的研究进展,并开展了可行性分析;归纳了CO2废气与工业废液的反应原理,将其大致分为中和反应、复分解反应、微生物转化等反应类型,并讨论了其吸收动力学;总结了工业废液吸收低浓度CO2废气的工艺装置与流程。在废液吸收废气的处理模式中,CO2的吸收对降低碱液的pH、脱除废液中有害物质效果良好,同时还可以副产微纳米碳酸钙、生物柴油等高附加值产品,实现废弃资源的深度循环利用。此外,分析了工业废液吸收CO2废气的生命周期评价,通过对能耗、碳排放和成本评估,进一步讨论了工业废液吸收CO2废气对环境的影响及经济可行性。结合CO2减排的前景,从工业应用的角度探讨了工业废液用作低浓度CO2吸收剂面临的挑战,并对其未来产业化发展进行了展望。  相似文献   

18.
CO2化学转化研究进展概述   总被引:2,自引:0,他引:2  
巩金龙 《化工学报》2017,68(4):1282-1285
CO2的化学转化以获得具有经济价值的能源或化学品为目标,可实现CO2的资源化循环利用,是解决中国碳排放问题的理想方式之一。但由于CO2极其稳定且转化路径复杂,导致其转化率低且产物选择性不佳。开键还原和不变价化合是CO2化学转化的两条基本路径。在开键还原方面,CO2加氢还原已有工业示范装置报道,但单程转化率较低且选择性不足;而CO2光电还原目前尚处于实验室研发阶段。在化合转化方面,可将CO2转化合成为碳酸酯/聚碳酸酯,或通过矿化过程实现CO2的转化与利用,但反应系统的转化效率以及转化过程的经济性仍有待提高。在此背景下,科技部2016年启动了“基于CO2高效转化利用的关键基础科学问题”国家重点研发计划项目。在未来的研究工作中,将阐明CO2光电还原和加氢还原的微观动力学机制与能量传递路径,建立更加可控的催化剂制备方法,实现CO2还原新途径与新技术的突破;研究CO2与离子液体相互作用机制、催化转化过程及介质强化反应-传递耦合规律;揭示非碱性矿活化CO2过程的相变规律和矿化反应原理,为CO2转化与利用的大范围推广奠定基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号