首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
过渡金属-氮共掺杂炭材料是一类高效的CO2电还原催化剂。以热解聚合物制备的氮掺杂炭材料为载体,浸渍镍源,经红外灯光照2 h,利用光化学法制备了高分散的镍-氮-碳催化剂(Ni/NC)。采用扫描电镜(SEM)、物理吸附、粉末X射线衍射(XRD)、X射线光电子能谱(XPS)等手段对催化剂的形貌、结构、物相和组成进行了分析,并评价了催化剂的CO2电还原反应性能。电化学性能测试结果表明,在0.5 mol/L的KHCO3电解液中,镍的负载量为2 %(质量分数)时催化性能最好,CO分电流密度得到有效提升,塔菲尔斜率为492 mV/dec,起始过电位为286 mV;在-0.6 V(vs.RHE)下,CO的法拉第效率为78%,在-1.0 ~-0.5 V(vs.RHE)内,n(CO)/n(H2)=0.5~3.6。  相似文献   

2.
张轩  黄耀桢  邵秀丽  李晶  李丰  岳秦  王政 《化工进展》2021,40(7):3736-3746
近年来,随着有关铜基催化剂价态、晶面、微观形态等结构化因素对其催化性能影响的研究不断深入,铜基催化剂电化学还原CO2高选择性制备高附加值多碳(C2+)产物取得长足进展。本文系统综述了近五年来结构化铜基催化剂电化学还原CO2生成C2+产物的研究报道,并分析总结了铜基催化剂表面混合价态、高活性晶面和丰富晶界的存在,以及富含限域空间的形态学结构(纳米线阵列、纳米树突和纳米多孔结构等)的构建与其电化学还原CO2生成C2+产物的活性和选择性之间的构效关系。进一步提出了CO2电化学还原领域发展的新趋势,即充分发挥各个结构化因素的协同作用,原位制备具有混合价态和丰富晶界的纳米多孔结构铜基催化剂,并在流通池中高效还原CO2持续生成C2+产物。  相似文献   

3.
陈国钱  叶丁丁  李俊  付乾  张亮  朱恂  杨扬 《化工学报》2017,68(Z1):225-231
针对CO2电化学还原中气体扩散电极可强化CO2的传质,基于碳毡制备了负载锡-石墨烯催化层的新型气体扩散电极,研究了CO2反应条件、电极厚度、催化剂载量及反应电位对CO2电化学还原性能的影响。实验结果表明:与溶解态CO2反应条件相比,采用气相CO2反应条件电化学还原性能更好;一定范围内增加电极厚度和催化剂载量可以增加气-液-固三相反应界面,提升CO2电化学还原性能;随着电解电位负移,甲酸产量增加,电流效率先增大后减小;实验中使用厚度为5 mm、载量为5 mg·cm-2的电极,在-1.8 V(vs Ag/AgCl)条件下进行电化学还原时,平均电流密度为(12.79±1.27) mA·cm-2,甲酸电流效率达到最佳为41.55%±2.50%。  相似文献   

4.
利用可再生能源驱动CO2电化学还原制增值产品可实现人工碳循环和洁净电能的高效存储,是实现碳中和战略目标的重要策略。铜基催化剂是迄今为止唯一可实现CO2电化学还原制取多种产物的催化剂,但其面临CO2电化学还原过电势高和产物选择性低等挑战。为提升铜基催化剂CO2电化学还原性能,采用模板剂辅助水热合成法制备纳米CuO催化剂,探究聚乙烯吡咯烷酮(PVP)模板剂添加量对CuO催化剂微观结构和CO2电化学还原性能的影响。结果表明,添加PVP直接影响水热合成过程中CuO晶体成核与生长。CuO催化剂的平均粒径和CO2电化学还原性能依赖于PVP模板剂的添加量。PVP分子中的疏水碳链有利于使其保持分子斥力,抑制CuO催化剂纳米颗粒聚并。随PVP含量提高,CuO催化剂平均粒径先降低后增加,而其CO2电化学还原性能先提高后降低。PVP质量分数为25%的CuO催化剂(CuO-PVP-25)的平均粒径最小(29.53 nm),其在-0.53 V(可逆氢电极RHE...  相似文献   

5.
闫伦彤  武泽林  李聪明  王俊英 《应用化工》2023,(11):3018-3022+3026
电催化二氧化碳减排(CO2RR)通过将可再生能源转化为增值燃料和化学品,是实现可持续能源经济和全球气候变化目标最有潜力的途径之一。采用简单易行的水热法合成了不同掺杂比例的In-SnS2催化剂,对催化剂结构进行表征以及测试电催化CO2还原性能,对比了不同掺杂量In-SnS2催化剂对CO2RR的影响。结果表明,元素In的掺杂调节了Sn元素的电子结构,促进CO2活化过程;掺杂量也是影响催化剂电化学活性的重要因素之一,其中原子含量为3%的In-SnS2催化剂表现出最佳的电化学活性,在-1.2 V vs.RHE下该电极电催化CO2为甲酸盐的法拉第效率(FE)为95.48%,且在较宽的电压范围内甲酸盐FE均在80%以上。这项工作为电催化还原CO2领域中硫化物催化剂的开发提供了新思路。  相似文献   

6.
采用硝酸和尿素联合对活性炭进行改性,制备了富含氮元素的氮掺杂活性炭,考察了孔结构、氮含量和氮种类(吡啶氮、吡咯氮和石墨氮)对CH4-CO2重整反应催化性能的影响。采用BET、SEM、EA、FTIR、XPS、CO2-TPD和TG表征手段对反应前后催化剂的物理化学性质进行了表征,对引入活性炭表面的含氮官能团的种类及其在重整过程中所起的作用进行了分析。相比于未改性的原活性炭,硝酸和尿素同时改性制备的氮掺杂活性炭(AC-U.NA)引入了更多的羟基官能团和含氮官能团。特别是通过两者共同改性后,所制备的氮掺杂活性炭引入的吡啶氮官能团比例明显提高,为CH4-CO2重整反应提供了更多的活性位点,初始CH4和CO2转化率达到55.94%和66.46%。同时经过两者联合改性后,所制备的AC-U.NA材料表面具有极性,不仅有利于酸性CO2分子的吸附和活化,而且有利于CO2消碳反应,减少了积炭的生成,对所制备的非金属重整催化剂的活性和抗积炭性具有重要的意义。  相似文献   

7.
吴诗德  易峰  平丹  张逸飞  郝健  刘国际  方少明 《化工学报》2022,73(10):4484-4497
二氧化碳(CO2)的资源化利用是实现“碳达峰,碳中和”的重要手段。在众多CO2转化技术当中,电催化CO2还原反应因反应条件温和、工艺过程简单等优点,被认为是极具应用前景的减碳技术之一,其关键在于高效、高稳定性电催化剂的开发。过渡金属-氮-碳(M-N-C)材料是电还原CO2生成CO的有效催化剂,针对其高温热解制备过程中活性金属原子容易聚集且氮原子流失严重,进而使得活性位密度降低,催化性能下降等问题,本文提出以双氰胺(DCDA)为碳源和氮源,以乙酰丙酮镍(Ni(acac)2)为金属源,以氯化铵(NH4Cl)为第二氮源和造孔剂,采用简单的NH4Cl辅助热解-酸刻蚀的方法制备得到镍-氮-碳纳米管(Ni-N-CNTs)电还原CO2催化剂,并详细考察NH4Cl添加量对催化剂结构和催化性能的影响。表征结果表明:NH4Cl的加入有利于催化剂纳米管状形貌和多级孔结构的生成,同时有利于催化剂中Ni-Nx (1.6%,摩尔分数)和pyridinic-N (1.75%,摩尔分数)物种含量的增加。一系列性能测试结果表明:催化剂的活性中心为Ni-Nx,同时pyridinic-N的存在也有利于催化性能的提高,当前体中NH4Cl加入量与氮源和金属源总质量比为1∶1时,所得Ni-N-CNTs-1催化剂催化性能最好,在电压为-0.65 V (vs RHE)时,CO法拉第效率最高达92%,此时CO部分电流密度为8 mA·cm-2。此外,该催化剂还表现出良好的催化稳定性,连续恒电位电解12 h,催化性能基本不变。该催化剂制备工艺简单,制备条件可控,研究结果可为高效M-N-C电还原CO2催化剂的设计和制备提供一种切实有效的研究思路和方法。  相似文献   

8.
谢竺 《硅酸盐通报》2020,39(12):3952-3957
为研究建筑废弃物——锯末木屑在环保中的应用,以NaNH2为活化剂和氮源,利用一步热解法制备了氮掺杂的多孔碳材料,采用X射线衍射、X光电子衍射、氮气吸附-脱附等温线等方法对样品进行表征。结果发现样品主要由微孔构成,大的比表面积和高的氮含量相互协同,为CO2的电化学还原反应提供了丰富的催化活性位点和CO2反应物。电化学测试研究结果发现,样品还原CO2的主产物为CO,在-0.7 V(可逆氢电极,RHE)的过电势下,CO的法拉第效率高达82%,且样品可持续稳定电解18 h。说明以建筑废弃木屑材料制备的多孔碳可有效还原CO2,实现在环保领域中的应用。  相似文献   

9.
吴诗德  易峰  平丹  张逸飞  郝健  刘国际  方少明 《化工学报》1951,73(10):4484-4497
二氧化碳(CO2)的资源化利用是实现“碳达峰,碳中和”的重要手段。在众多CO2转化技术当中,电催化CO2还原反应因反应条件温和、工艺过程简单等优点,被认为是极具应用前景的减碳技术之一,其关键在于高效、高稳定性电催化剂的开发。过渡金属-氮-碳(M-N-C)材料是电还原CO2生成CO的有效催化剂,针对其高温热解制备过程中活性金属原子容易聚集且氮原子流失严重,进而使得活性位密度降低,催化性能下降等问题,本文提出以双氰胺(DCDA)为碳源和氮源,以乙酰丙酮镍(Ni(acac)2)为金属源,以氯化铵(NH4Cl)为第二氮源和造孔剂,采用简单的NH4Cl辅助热解-酸刻蚀的方法制备得到镍-氮-碳纳米管(Ni-N-CNTs)电还原CO2催化剂,并详细考察NH4Cl添加量对催化剂结构和催化性能的影响。表征结果表明:NH4Cl的加入有利于催化剂纳米管状形貌和多级孔结构的生成,同时有利于催化剂中Ni-Nx (1.6%,摩尔分数)和pyridinic-N (1.75%,摩尔分数)物种含量的增加。一系列性能测试结果表明:催化剂的活性中心为Ni-Nx,同时pyridinic-N的存在也有利于催化性能的提高,当前体中NH4Cl加入量与氮源和金属源总质量比为1∶1时,所得Ni-N-CNTs-1催化剂催化性能最好,在电压为-0.65 V (vs RHE)时,CO法拉第效率最高达92%,此时CO部分电流密度为8 mA·cm-2。此外,该催化剂还表现出良好的催化稳定性,连续恒电位电解12 h,催化性能基本不变。该催化剂制备工艺简单,制备条件可控,研究结果可为高效M-N-C电还原CO2催化剂的设计和制备提供一种切实有效的研究思路和方法。  相似文献   

10.
周毅  王永洪  张新儒  李晋平 《化工学报》2021,72(10):5237-5246
为了获得高性能的混合基质膜,有效捕集烟道气中的CO2,设计了对CO2有优异的扩散选择性和吸附选择性的氮硫共掺杂多孔碳球添加剂,实现了烟道气中CO2/N2的高效分离。选用表面含氧基团丰富的葡萄糖作为碳源,硫脲作为氮源和硫源,通过水热法制备了氮硫共掺杂碳球(NSC),并用KOH活化,获得了具有多孔结构的氮硫共掺杂碳球(NSPC),再加入聚醚嵌段酰胺(PEBA)中制备出PEBA/NSPC混合基质膜。采用FTIR、XRD和BET表征了材料的化学结构和孔结构,借助力学性能表征了膜的两相界面相容性。系统研究了PEBA/NSPC混合基质膜中葡萄糖与硫脲的质量比、NSC和KOH的质量比、NSPC的添加量、操作压力、操作温度,以及模拟烟道气条件对膜CO2渗透性、CO2/N2选择性的影响。结果表明:NSPC材料成功实现了氮、硫元素的共掺杂,而且具有较好的孔结构。在操作温度25℃、操作压力0.2 MPa的条件下,混合基质膜中NSPC添加量为3%(质量)时气体分离性能最优,CO2渗透系数和CO2/N2选择性分别为589 Barrer和64,相比纯PEBA膜分别提高了244%和139%。这是因为多孔碳球的微孔结构显著提高了CO2的扩散选择性,同时氮、硫元素的掺杂因为酸碱相互作用和良好亲和性有效提高了CO2的吸附选择性。稳定性实验表明,PEBA/NSPC混合基质膜在360 h连续运行过程中气体分离性能稳定,具有较好的工业应用前景。  相似文献   

11.
Electrochemical reduction of carbon dioxide (CO2ER) into formate plays a crucial role in CO2 conversion and utilization. However, it still faces the problems of high overpotential and poor catalytic stability. Herein, we report a hybrid CO2ER electrocatalyst composed of layered bismuth sulfide (Bi2S3) and bismuth oxide (Bi2O3) supported on carrageenan derived carbon (Bi-CDC) prepared by a combined pyrolysis with hydrothermal treatment. In such 3D hybrid, layered Bi2O3 and Bi2S3 are uniformly grown on nanocarbon supports. Benefiting from strong synergistic effect between Bi2O3/Bi2S3 and nanocarbon, Bi-CDC-1:2 displays a high Faradic efficiency (FE) of >80% for formate production in the range of -0.9 V to -1.1 V with the maximum formate FE of 85.6% and current density of 14.1 mA·cm-2 at -1.0 V. Further, a positive onset potential of -0.5 V, a low Tafel slope of 112.38 mV·dec-1, and a slight performance loss during long-term CO2ER tests are observed on Bi-CDC-1:2. Experimental results shows that the better CO2ER performance of Bi-CDC-1:2 than that of Bi2O3 can be attributed to the strong interfacial interactions between nanocarbons and Bi2O3/Bi2S3. In situ ATR-FTIR measurements reveal that the rate-determining step in the CO2ER is the formation of HCOO* intermediated. Compared with carbon support, Bi-CDC-1:2 can promote the production of HCOO* intermediate and thus promoting CO2ER kinetic.  相似文献   

12.
In this work, nitrogen-doped porous carbons (NACs) were fabricated as an adsorbent by urea modification and KOH activation. The CO2 adsorption mechanism for the NACs was then explored. The NACs are found to present a large specific surface area (1920.72– 3078.99 m2·g1) and high micropore percentage (61.60%–76.23%). Under a pressure of 1 bar, sample NAC-650-650 shows the highest CO2 adsorption capacity up to 5.96 and 3.92 mmol·g1 at 0 and 25 °C, respectively. In addition, the CO2/N2 selectivity of NAC-650-650 is 79.93, much higher than the value of 49.77 obtained for the nonnitrogen-doped carbon AC-650-650. The CO2 adsorption capacity of the NAC-650-650 sample maintains over 97% after ten cycles. Analysis of the results show that the CO2 capacity of the NACs has a linear correlation (R2 = 0.9633) with the cumulative pore volume for a pore size less than 1.02 nm. The presence of nitrogen and oxygen enhances the CO2/N2 selectivity, and pyrrole-N and hydroxy groups contribute more to the CO2 adsorption. In situ Fourier transform infrared spectra analysis indicates that CO2 is adsorbed onto the NACs as a gas. Furthermore, the physical adsorption mechanism is confirmed by adsorption kinetic models and the isosteric heat, and it is found to be controlled by CO2 diffusion. The CO2 adsorption kinetics for NACs at room temperature and in pure CO2 is in accordance with the pseudo-first-order model and Avramís fractional-order kinetic model.  相似文献   

13.
陈功  卢滇楠  吴建中  刘铮 《化工学报》2015,66(8):2903-2910
气相中酶分子表面的水化层对其催化行为具有显著的影响。本文采用全原子分子动力学模拟方法考察了气相体系碳酸酐酶表面的水化层对酶结构以及CO2在酶分子中扩散行为的影响。首先展现了水分子在酶分子及其活性中心周围的分布,研究了水化层厚度对于酶结构以及CO2扩散速率的影响;发现最有利于CO2扩散进入酶分子的水化层厚度为0.7 nm。确认了碳酸酐酶内CO2的吸附位点,通过对其开合状态统计,显示出碳酸酐酶中CO2扩散通道中的瓶颈位置。上述结果对设计和优化碳酸酐酶催化气相体系中CO2的吸附和转化提供了依据和启示。  相似文献   

14.
以淀粉为原料,使用水热法将其碳化后用活化剂KOH对其活化,制备了淀粉基多孔碳材料,并对其进行结构表征和CO2/CH4的吸附性能测试,计算吸附热以及材料对CO2/CH4的吸附选择性,讨论了碳材料结构对其吸附性能的影响。结果表明:在制备过程中,随着活化剂KOH用量比例的增大,所制得的材料其比表面积和孔容增大,其孔径分布也就越宽。所制得的碳材料其比表面积可达2972 m2·g-1。这些淀粉基多孔碳材料对水蒸气的吸附等温线呈现出Ⅳ类等温线。所制备材料对CO2吸附容量主要取决于其孔径小于0.8 nm的累积孔容(Vd < 0.8 nm)。材料的超微孔的孔容越大,其对CO2吸附容量也越大。所制备的C-KOH-1材料在101325 Pa和298 K条件下,对CO2的吸附量达到4.2 mmol·g-1,其对CO2的吸附热明显高于其对CH4吸附热,其对CO2/CH4吸附选择性为3.7~4.26,同时本文通过对材料的水蒸气吸附等温线进行测试,结果表明所得材料主要表现为中等憎水性,这对材料在实际工况的应用奠定了基础。  相似文献   

15.
Methods for preparation of carbon/silicalite-1 composite membranes have been developed. First, silicalite-1 membranes were prepared by in-situ hydrothermal synthesis on both porous alumina and metal disks. Preparation of the carbon/silicalite-1 composite membranes was accomplished by polymerizing furfuryl alcohol on the surface of the silicalite-1 membrane, followed by carbonizing the polymer layer in an inert atmosphere at 773 K. The pure silicalite-1 membrane showed no selectivity for single gases, indicating the presence of intercrystalline diffusion and viscous flow as the dominant transport mechanism. The carbon/zeolite composite membrane exhibited ideal selectivities for He/N2, CO2/N2, and N2/CH4 of 11.99, 17.12, and 3.58 at room temperature. No permeation of n-butane and i-butane for the composite membrane was detected up to temperatures of 453 K, indicating that the pore size for the composite membrane was approximately 0.4 nm. By carefully oxidizing the carbon layer in air at 623 K, the pore size of the composite membrane was adjusted such that n-butane permeation could be detected. No permeation of i-butane was apparent, suggesting that the pore size of the composite membrane had been enlarged to approximately 0.5 nm. Further oxidation of the carbon layer produced a finite n-/i-C4H4 ideal selectivity, indicating that the pore size of the membrane was now larger than 0.55 nm. Therefore, selective oxidation of the carbon layer can be used to control the pore size of the composite membrane.  相似文献   

16.
赵昊瀚  潘艳秋  何流  俞路  王同华 《化工学报》2016,67(6):2393-2400
针对炭膜分离CO2/CH4混合气体的过程,分别采用Materials Studio和Lammps软件进行分子模拟,建立与炭膜孔结构相近的Z字形孔模型,通过实验数据验证了模型的可靠性,通过对CO2/CH4纯组分及混合气体在膜孔内的吸附和扩散过程的模拟得到分离系数并探讨气体分离机理。综合吸附与扩散过程的模拟结果表明:适当的低温和较小的孔径有利于实现CO2/CH4混合气体的分离;随着温度的升高,CO2/CH4的分离系数减小,而且膜孔径对分离系数的排序为0.670nm>1.005nm>1.340nm;在温度为298K、膜孔径为0.670nm的操作条件下CO2/CH4的分离系数为20.1,与实验数据较吻合。研究结果可为优化炭膜制备提供指导,并为探讨分离过程机理提供依据。  相似文献   

17.
王燕霞  胡修德  郝健  郭庆杰 《化工学报》2020,71(5):2333-2343
以商业煤基活性炭为原料,经低浓度氧气焙烧、H2O2氧化改性,并以四乙烯五胺(TEPA)浸渍,得到胺负载复合氧化活性炭,用于模拟烟道气[(15%(体积)CO2+85%(体积)N2)+10%(体积)H2O]中CO2吸附。低浓度氧气焙烧后,活性炭的最大比表面积和孔体积分别为1421.82 m2/g、0.83 cm3/g。经复合氧化改性后,活性炭的介孔体积增大,表面含氧官能团增加,使得TEPA负载复合氧化活性炭的CO2吸附性能提高。焙烧时间为4 h,H2O2氧化、负载40%TEPA的样品COAC-4-40TEPA,在60℃时CO2饱和吸附量最高为2.45 mmol/g,是TEPA负载未改性活性炭AC-40TEPA的2.02倍。经过十次吸附循环后,COAC-4-40TEPA的 CO2饱和吸附量可维持在92.24%,而TEPA的浸出量仅有0.67%。失活模型研究表明,COAC-4-40TEPA的初始吸附速率常数是AC-40TEPA的1.64倍,且失活速率常数低于AC-40TEPA。  相似文献   

18.
李志达  李金莲  吴红军 《化工进展》2019,38(9):4174-4182
以碳酸盐为电解质,以铁、镍、镍铬合金等廉价金属材料为电极,研究构建了高温熔盐电解池,将CO2一步法转化为新型碳材料,并考察了熔盐组成及配比、电解温度、电流密度、电极材料等实验条件对碳材料形貌结构的影响。采用X射线能谱分析仪(EDS)、扫描电镜(SEM)、透射电镜(TEM)、比表面积测试仪(BET)、X射线衍射仪(XRD)及拉曼光谱仪(Raman)等手段对碳材料的元素组成、形貌结构、比表面积、结晶度、有序度等特性进行表征分析。研究结果表明,450~600℃温度范围内,电解多元混合熔盐体系主要生成无定形碳;同时,电解温度、电流密度、电解质组成及配比等对碳产物的比表面积具有明显影响;通过改变电解质体系,辅以调控电流密度及电解温度等实验参数,可实现碳纳米管、碳球及蜂窝状多孔碳等特定形貌碳材料的可控合成,其中碳纳米管的石墨化程度较高,且由碳原子组成的层状六方石墨晶体排列规则有序。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号