首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Taylan et al. [2014]. Construction projects selection and risk assessment by Fuzzy AHP and Fuzzy TOPSIS methodologies’ [Applied Soft Computing 17, 105–116] aimed at using novel analytic tools to assess the construction projects and their total risks under inexact and imprecise situations. They applied Fuzzy Analytic Hierarchy Process (Fuzzy AHP) to create appropriate weights for five main criteria i.e. time, cost, quality, safety, and environmental sustainability and then Fuzzy Technique for Order of Preference by Similarity to Ideal Solution (Fuzzy TOPSIS) to rank the 30 construction projects on the basis of the opinions of seven decision makers in various sectors in Saudi Arabia. In this work, some inaccuracies of this recently published article are shown and corrected.  相似文献   

2.
The recent global outbreak of COVID-19 damaged the world health systems, human health, economy, and daily life badly. None of the countries was ready to face this emerging health challenge. Health professionals were not able to predict its rise and next move, as well as the future curve and impact on lives in case of a similar pandemic situation happened. This created huge chaos globally, for longer and the world is still struggling to come up with any suitable solution. Here the better use of advanced technologies, such as artificial intelligence and deep learning, may aid healthcare practitioners in making reliable COVID-19 diagnoses. The proposed research would provide a prediction model that would use Artificial Intelligence and Deep Learning to improve the diagnostic process by reducing unreliable diagnostic interpretation of chest CT scans and allowing clinicians to accurately discriminate between patients who are sick with COVID-19 or pneumonia, and also empowering health professionals to distinguish chest CT scans of healthy people. The efforts done by the Saudi government for the management and control of COVID-19 are remarkable, however; there is a need to improve the diagnostics process for better perception. We used a data set from Saudi regions to build a prediction model that can help distinguish between COVID-19 cases and regular cases from CT scans. The proposed methodology was compared to current models and found to be more accurate (93 percent) than the existing methods.  相似文献   

3.

The influence of the ongoing COVID-19 pandemic that is being felt in all spheres of our lives and has a remarkable effect on global health care delivery occurs amongst the ongoing global health crisis of patients and the required services. From the time of the first detection of infection amongst the public, researchers investigated various applications in the fight against the COVID-19 outbreak and outlined the crucial roles of different research areas in this unprecedented battle. In the context of existing studies in the literature surrounding COVID-19, related to medical treatment decisions, the dimensions of context addressed in previous multidisciplinary studies reveal the lack of appropriate decision mechanisms during the COVID-19 outbreak. Multiple criteria decision making (MCDM) has been applied widely in our daily lives in various ways with numerous successful stories to help analyse complex decisions and provide an accurate decision process. The rise of MCDM in combating COVID-19 from a theoretical perspective view needs further investigation to meet the important characteristic points that match integrating MCDM and COVID-19. To this end, a comprehensive review and an analysis of these multidisciplinary fields, carried out by different MCDM theories concerning COVID19 in complex case studies, are provided. Research directions on exploring the potentials of MCDM and enhancing its capabilities and power through two directions (i.e. development and evaluation) in COVID-19 are thoroughly discussed. In addition, Bibliometrics has been analysed, visualization and interpretation based on the evaluation and development category using R-tool involves; annual scientific production, country scientific production, Wordcloud, factor analysis in bibliographic, and country collaboration map. Furthermore, 8 characteristic points that go through the analysis based on new tables of information are highlighted and discussed to cover several important facts and percentages associated with standardising the evaluation criteria, MCDM theory in ranking alternatives and weighting criteria, operators used with the MCDM methods, normalisation types for the data used, MCDM theory contexts, selected experts ways, validation scheme for effective MCDM theory and the challenges of MCDM theory used in COVID-19 studies. Accordingly, a recommended MCDM theory solution is presented through three distinct phases as a future direction in COVID19 studies. Key phases of this methodology include the Fuzzy Delphi method for unifying criteria and establishing importance level, Fuzzy weighted Zero Inconsistency for weighting to mitigate the shortcomings of the previous weighting techniques and the MCDM approach by the name Fuzzy Decision by Opinion Score method for prioritising alternatives and providing a unique ranking solution. This study will provide MCDM researchers and the wider community an overview of the current status of MCDM evaluation and development methods and motivate researchers in harnessing MCDM potentials in tackling an accurate decision for different fields against COVID-19.

  相似文献   

4.
While many epidemiological models were proposed to understand and handle COVID-19 pandemic, too little has been invested to understand human viral replication and the potential use of novel antivirals to tackle the infection. In this work, using a control theoretical approach, validated mathematical models of SARS-CoV-2 in humans are characterized. A complete analysis of the main dynamic characteristic is developed based on the reproduction number. The equilibrium regions of the system are fully characterized, and the stability of such regions is formally established. Mathematical analysis highlights critical conditions to decrease monotonically SARS-CoV-2 in the host, as such conditions are relevant to tailor future antiviral treatments. Simulation results show the aforementioned system characterization.  相似文献   

5.
An extension of the classical pandemic SIRD model is considered for the regional spread of COVID-19 in France under lockdown strategies. This compartment model divides the infected and the recovered individuals into undetected and detected compartments respectively. By fitting the extended model to the real detected data during the lockdown, an optimization algorithm is used to derive the optimal parameters, the initial condition and the epidemics start date of regions in France. Considering all the age classes together, a network model of the pandemic transport between regions in France is presented on the basis of the regional extended model and is simulated to reveal the transport effect of COVID-19 pandemic after lockdown. Using the measured values of displacement of people between cities, the pandemic network of all cities in France is simulated by using the same model and method as the pandemic network of regions. Finally, a discussion on an integro-differential equation is given and a new model for the network pandemic model of each age class is provided.  相似文献   

6.
A significant increase in the number of coronavirus cases can easily be noticed in most of the countries around the world. Inspite of the consistent preventive initiatives being taken to contain the spread of this virus, the unabated increase in the cases is both alarming and intriguing. The role of mathematical models in predicting and estimating the spread of the virus, and identifying various preventive factors dependencies has been found important and effective in most of the previous pandemics like Severe Acute Respiratory Syndrome (SARS) 2003. In this research work, authors have proposed the Susceptible-Infectected-Removed (SIR) model variation in order to forecast the pattern of coronavirus disease (COVID-19) spread for the upcoming eight weeks in perspective of Saudi Arabia. The study has been performed by using SIR model with a proposed simplification using average progression for further estimation of β and γ values for better curve fittings ratios. The predictive results of this study clearly show that under the current public health interventions, there will be an increase in the COVID-19 cases in Saudi Arabia in the next four weeks. Hence, a set of strong health primitives and precautionary measures are recommended in order to avoid and prevent the further spread of COVID-19 in Saudi Arabia.  相似文献   

7.
This paper aims to ease group decision-making by using an integration of fuzzy AHP (analytic hierarchy process) and fuzzy TOPSIS (technique for order preference by similarity to ideal solution) and its application to software selection of an electronic firm. Firstly, priority values of criteria in software selection problem have been determined by using fuzzy extension of AHP method. Fuzzy extension of AHP is suggested in this paper because of little computation time and much simpler than other fuzzy AHP procedures. Then, the result of the fuzzy TOPSIS model can be employed to define the most appropriate alternative with regard to this firm's goals in uncertain environment. Fuzzy numbers are presented in all phases in order to overcome any vagueness in decision making process. The final decision depends on the degree of importance of each decision maker so that wrong degree of importance causes the mistaken result. The researchers generally determine the degrees of importance of each decision maker according to special characteristics of each decision maker as subjectivity. In order to overcome this subjectivity in this paper, the judgments of decision makers are degraded to unique decision by using an attribute based aggregation technique. There is no study about software selection using integrated fuzzy AHP-fuzzy TOPSIS approach with group decision-making based on an attribute based aggregation technique. The results of the proposed approach and the other approaches are compared. Results indicate that our methodology allows decreasing the uncertainty and the information loss in group decision making and thus, ensures a robust solution to the firm.  相似文献   

8.
Information Technology is developing rapidly and providing policy/decision makers with large amounts of information that require processing and analysis. Decision support systems (DSS) aim to provide tools that not only help such analyses, but enable the decision maker to experiment and simulate the effects of different policies and selection strategies. The specific context of this research, set in Saudi Arabia, is administrative decision making using large educational databases.  相似文献   

9.
Decision making is a complex process, particularly when it is carried out by multidisciplinary team. Methods based on the analytical hierarchy process have been widely employed because they provide solid mathematical background. Nevertheless, solutions such as the Aggregation of Individual Judgements (AIJ) and the Aggregation of Individual Priorities (AIP) do not offer sufficient explanatory data in regards with the final decision. We developed an agent-based decision support system (DSS) that employs fuzzy clustering to group individual evaluations and the AHP to reach a final decision. Fuzzy clustering is adequate to determine important pieces of data such as the largest group of evaluations that exist around a centroid value. On the other hand, the MAS paradigm offers capabilities for achieving distributed and asynchronous processing of data. The AHP is used after the individual evaluations are clustered, as if the group were a single evaluator. Altogether, the proposed solution enhances the quality of multi-criteria group decision making.  相似文献   

10.
Notwithstanding the religious intention of billions of devotees, the religious mass gathering increased major public health concerns since it likely became a huge super spreading event for the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Most attendees ignored preventive measures, namely maintaining physical distance, practising hand hygiene, and wearing facemasks. Wearing a face mask in public areas protects people from spreading COVID-19. Artificial intelligence (AI) based on deep learning (DL) and machine learning (ML) could assist in fighting covid-19 in several ways. This study introduces a new deep learning-based Face Mask Detection in Religious Mass Gathering (DLFMD-RMG) technique during the COVID-19 pandemic. The DLFMD-RMG technique focuses mainly on detecting face masks in a religious mass gathering. To accomplish this, the presented DLFMD-RMG technique undergoes two pre-processing levels: Bilateral Filtering (BF) and Contrast Enhancement. For face detection, the DLFMD-RMG technique uses YOLOv5 with a ResNet-50 detector. In addition, the face detection performance can be improved by the seeker optimization algorithm (SOA) for tuning the hyperparameter of the ResNet-50 module, showing the novelty of the work. At last, the faces with and without masks are classified using the Fuzzy Neural Network (FNN) model. The stimulation study of the DLFMD-RMG algorithm is examined on a benchmark dataset. The results highlighted the remarkable performance of the DLFMD-RMG model algorithm in other recent approaches.  相似文献   

11.
Supplier selection has become a very critical activity to the performance of organizations and supply chains. Studies presented in the literature propose the use of the methods Fuzzy TOPSIS (Fuzzy Technique for Order of Preference by Similarity to Ideal Solution) and Fuzzy AHP (Fuzzy Analytic Hierarchy Process) to aid the supplier selection decision process. However, there are no comparative studies of these two methods when applied to the problem of supplier selection. Thus, this paper presents a comparative analysis of these two methods in the context of supplier selection decision making. The comparison was made based on the factors: adequacy to changes of alternatives or criteria; agility in the decision process; computational complexity; adequacy to support group decision making; the number of alternative suppliers and criteria; and modeling of uncertainty. As an illustrative example, both methods were applied to the selection of suppliers of a company in the automotive production chain. In addition, computational tests were performed considering several scenarios of supplier selection. The results have shown that both methods are suitable for the problem of supplier selection, particularly to supporting group decision making and modeling of uncertainty. However, the comparative analysis has shown that the Fuzzy TOPSIS method is better suited to the problem of supplier selection in regard to changes of alternatives and criteria, agility and number of criteria and alternative suppliers. Thus, this comparative study contributes to helping researchers and practitioners to choose more effective approaches for supplier selection. Suggestions of further work are also proposed so as to make these methods more adequate to the problem of supplier selection.  相似文献   

12.
COVID-19 pandemic has underlined the impact of emergent pathogens as a major threat to human health. The development of quantitative approaches to advance comprehension of the current outbreak is urgently needed to tackle this severe disease.Considering different starting times of infection, mathematical models are proposed to represent SARS-CoV-2 dynamics in infected patients. Based on the target cell limited model, the within-host reproductive number for SARS-CoV-2 is consistent with the broad values of human influenza infection. The best model to fit the data was including immune cell response, which suggests a slow immune response peaking between 5 to 10 days post-onset of symptoms. The model with the eclipse phase, time in a latent phase before becoming productively infected cells, was not supported. Interestingly, model simulations predict that SARS-CoV-2 may replicate very slowly in the first days after infection, and viral load could be below detection levels during the first 4 days post infection.A quantitative comprehension of SARS-CoV-2 dynamics and the estimation of standard parameters of viral infections is the key contribution of this pioneering work. These models can serve for future evaluation of control theoretical approaches to tailor new drugs against COVID-19.  相似文献   

13.
Coronavirus disease, which resulted from the SARS-CoV-2 virus, has spread worldwide since early 2020 and has been declared a pandemic by the World Health Organization (WHO). Coronavirus disease is also termed COVID-19. It affects the human respiratory system and thus can be traced and tracked from the Chest X-Ray images. Therefore, Chest X-Ray alone may play a vital role in identifying COVID-19 cases. In this paper, we propose a Machine Learning (ML) approach that utilizes the X-Ray images to classify the healthy and affected patients based on the patterns found in these images. The article also explores traditional, and Deep Learning (DL) approaches for COVID-19 patterns from Chest X-Ray images to predict, analyze, and further understand this virus. The experimental evaluation of the proposed approach achieves 97.5% detection performance using the DL model for COVID-19 versus normal cases. In contrast, for COVID-19 versus Pneumonia Virus scenario, we achieve 94.5% accurate detections. Our extensive evaluation in the experimental section guides and helps in the selection of an appropriate model for similar tasks. Thus, the approach can be used for medical usages and is particularly pertinent in detecting COVID-19 positive patients using X-Ray images alone.  相似文献   

14.
SARS-CoV-2 is a novel severe acute respiratory syndrome-like coronavirus (SARS-CoV), which is responsible of the ongoing world pandemic of COVID-19 disease. Although many approaches are being investigated to address this issue, nowaday there are no vaccines available and there is little evidence supporting the efficiency of potential therapeutic agents. Moreover, the high mutation rate of this virus heavily affects the understanding of its evolution and diffusion mechanisms, and, in turn, the development of effective solutions. In this study, two novel algorithms are provided for finding out recurrent patterns of nucleotide subsequences of different SARS-CoV-2 genomes as a unique signature capable of identifying the most peculiar features of the pathogen. In particular, we provide several subsequence patterns related to the Spike glycoprotein, which is believed to be the main target for developing effective drugs and vaccines against the COVID-19 disease because of its role in the entrance of coronaviruses into host cells. The experimental results, obtained by analyzing 5000 genomes of SARS-CoV-2, have shown that the extracted patterns are able to recognize the Spyke protein in the 99.35% of the considered genomes. In addition, such patterns have proven to be highly discriminating with respect to other pathogenic genomes, such as SARS, Middle East respiratory syndrome, Nipah, and the streptococcus bacteria. We hope that the findings presented in this study can help specialists in speeding up the design of more accurate drugs or vaccines against SARS-CoV-2.  相似文献   

15.
16.
The speed and pace of the transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2; also referred to as novel Coronavirus 2019 and COVID-19) have resulted in a global pandemic, with significant health, financial, political, and other implications. There have been various attempts to manage COVID-19 and other pandemics using technologies such as Internet of Things (IoT) and 5G/6G communications. However, we also need to ensure that IoT devices used to facilitate COVID-19 monitoring and treatment (e.g., medical IoT devices) are secured, as the compromise of such devices can have significant consequences (e.g., life-threatening risks to COVID-19 patients). Hence, in this paper we comprehensively survey existing IoT-related solutions, potential security and privacy risks and their requirements. For example, we classify existing security and privacy solutions into five categories, namely: authentication and access control solutions, key management and cryptography solutions, blockchain-based solutions, intrusion detection systems, and privacy-preserving solutions. In each category, we identify the associated challenges. We also identify a number of recommendations to inform future research.   相似文献   

17.
Fuzzy Cognitive Map (FCM) technique is a combination of Fuzzy Logic and Artificial Neural Networks that is extensively used by experts and scientists of a diversity of disciplines, for strategic planning, decision making and predictions. A standardized representation of FCMs accompanied by a system that would assist decision makers to simulate their own developed Fuzzy Cognitive Maps would be highly appreciated by them, and would help the dissemination of FCMs. In this paper, (a) a RuleML representation of FCM is proposed and (b) a system is designed and implemented in Prolog programming language to assist experts to simulate their own FCMs. This system returns results in valid RuleML syntax, making them readily available to other cooperative systems. The representation capabilities and the design choices of the implemented system are discussed and a variety of examples are given to demonstrate the use of the system.  相似文献   

18.

The coronavirus COVID-19 pandemic is today’s major public health crisis, we have faced since the Second World War. The pandemic is spreading around the globe like a wave, and according to the World Health Organization’s recent report, the number of confirmed cases and deaths are rising rapidly. COVID-19 pandemic has created severe social, economic, and political crises, which in turn will leave long-lasting scars. One of the countermeasures against controlling coronavirus outbreak is specific, accurate, reliable, and rapid detection technique to identify infected patients. The availability and affordability of RT-PCR kits remains a major bottleneck in many countries, while handling COVID-19 outbreak effectively. Recent findings indicate that chest radiography anomalies can characterize patients with COVID-19 infection. In this study, Corona-Nidaan, a lightweight deep convolutional neural network (DCNN), is proposed to detect COVID-19, Pneumonia, and Normal cases from chest X-ray image analysis; without any human intervention. We introduce a simple minority class oversampling method for dealing with imbalanced dataset problem. The impact of transfer learning with pre-trained CNNs on chest X-ray based COVID-19 infection detection is also investigated. Experimental analysis shows that Corona-Nidaan model outperforms prior works and other pre-trained CNN based models. The model achieved 95% accuracy for three-class classification with 94% precision and recall for COVID-19 cases. While studying the performance of various pre-trained models, it is also found that VGG19 outperforms other pre-trained CNN models by achieving 93% accuracy with 87% recall and 93% precision for COVID-19 infection detection. The model is evaluated by screening the COVID-19 infected Indian Patient chest X-ray dataset with good accuracy.

  相似文献   

19.

As coronavirus disease 2019 (COVID-19) spreads across the world, the transfusion of efficient convalescent plasma (CP) to the most critical patients can be the primary approach to preventing the virus spread and treating the disease, and this strategy is considered as an intelligent computing concern. In providing an automated intelligent computing solution to select the appropriate CP for the most critical patients with COVID-19, two challenges aspects are bound to be faced: (1) distributed hospital management aspects (including scalability and management issues for prioritising COVID-19 patients and donors simultaneously), and (2) technical aspects (including the lack of COVID-19 dataset availability of patients and donors and an accurate matching process amongst them considering all blood types). Based on previous reports, no study has provided a solution for CP-transfusion-rescue intelligent framework during this pandemic that has addressed said challenges and issues. This study aimed to propose a novel CP-transfusion intelligent framework for rescuing COVID-19 patients across centralised/decentralised telemedicine hospitals based on the matching component process to provide an efficient CP from eligible donors to the most critical patients using multicriteria decision-making (MCDM) methods. A dataset, including COVID-19 patients/donors that have met the important criteria in the virology field, must be augmented to improve the developed framework. Four consecutive phases conclude the methodology. In the first phase, a new COVID-19 dataset is generated on the basis of medical-reference ranges by specialised experts in the virology field. The simulation data are classified into 80 patients and 80 donors on the basis of the five biomarker criteria with four blood types (i.e., A, B, AB, and O) and produced for COVID-19 case study. In the second phase, the identification scenario of patient/donor distributions across four centralised/decentralised telemedicine hospitals is identified ‘as a proof of concept’. In the third phase, three stages are conducted to develop a CP-transfusion-rescue framework. In the first stage, two decision matrices are adopted and developed on the basis of the five ‘serological/protein biomarker’ criteria for the prioritisation of patient/donor lists. In the second stage, MCDM techniques are analysed to adopt individual and group decision making based on integrated AHP-TOPSIS as suitable methods. In the third stage, the intelligent matching components amongst patients/donors are developed on the basis of four distinct rules. In the final phase, the guideline of the objective validation steps is reported. The intelligent framework implies the benefits and strength weights of biomarker criteria to the priority configuration results and can obtain efficient CPs for the most critical patients. The execution of matching components possesses the scalability and balancing presentation within centralised/decentralised hospitals. The objective validation results indicate that the ranking is valid.

  相似文献   

20.
This paper formulates a Model Predictive Control (MPC) policy to mitigate the COVID-19 contagion in Brazil, designed as optimal On-Off social isolation strategy. The proposed optimization algorithm is able to determine the time and duration of social distancing policies in the country. The achieved results are based on data from the period between March and May of 2020, regarding the cumulative number of infections and deaths due to the SARS-CoV-2 virus. This dataset is assumably largely sub-notified due to the absence of mass testing in Brazil. Thus, the MPC is based on a SIR model which is identified using an uncertainty-weighted Least-Squares criterion. Furthermore, this model includes an additional dynamic variable that mimics the response of the population to the social distancing policies determined by the government, which affect the COVID-19 transmission rate. The proposed control method is set within a mixed-logical formalism, since the decision variable is forcefully binary (existence or the absence of social distance policy). A dwell-time constraint is included to avoid too frequent shifts between these two inputs. The achieved simulation results illustrate how such optimal control method would operate in practice, pointing out that no social distancing should be relaxed before mid August 2020. If relaxations are necessary, they should not be performed before this date and should be in small periods, no longer than 25 days. This paradigm would proceed roughly until January/2021. The results also indicate a possible second peak of infections, which has a forecast to the beginning of October. This peak can be reduced if the periods of days with relaxed social isolation measures are shortened.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号