首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

The coronavirus COVID-19 pandemic is today’s major public health crisis, we have faced since the Second World War. The pandemic is spreading around the globe like a wave, and according to the World Health Organization’s recent report, the number of confirmed cases and deaths are rising rapidly. COVID-19 pandemic has created severe social, economic, and political crises, which in turn will leave long-lasting scars. One of the countermeasures against controlling coronavirus outbreak is specific, accurate, reliable, and rapid detection technique to identify infected patients. The availability and affordability of RT-PCR kits remains a major bottleneck in many countries, while handling COVID-19 outbreak effectively. Recent findings indicate that chest radiography anomalies can characterize patients with COVID-19 infection. In this study, Corona-Nidaan, a lightweight deep convolutional neural network (DCNN), is proposed to detect COVID-19, Pneumonia, and Normal cases from chest X-ray image analysis; without any human intervention. We introduce a simple minority class oversampling method for dealing with imbalanced dataset problem. The impact of transfer learning with pre-trained CNNs on chest X-ray based COVID-19 infection detection is also investigated. Experimental analysis shows that Corona-Nidaan model outperforms prior works and other pre-trained CNN based models. The model achieved 95% accuracy for three-class classification with 94% precision and recall for COVID-19 cases. While studying the performance of various pre-trained models, it is also found that VGG19 outperforms other pre-trained CNN models by achieving 93% accuracy with 87% recall and 93% precision for COVID-19 infection detection. The model is evaluated by screening the COVID-19 infected Indian Patient chest X-ray dataset with good accuracy.

  相似文献   

2.

The 2019 novel coronavirus disease (COVID-19), with a starting point in China, has spread rapidly among people living in other countries and is approaching approximately 101,917,147 cases worldwide according to the statistics of World Health Organization. There are a limited number of COVID-19 test kits available in hospitals due to the increasing cases daily. Therefore, it is necessary to implement an automatic detection system as a quick alternative diagnosis option to prevent COVID-19 spreading among people. In this study, five pre-trained convolutional neural network-based models (ResNet50, ResNet101, ResNet152, InceptionV3 and Inception-ResNetV2) have been proposed for the detection of coronavirus pneumonia-infected patient using chest X-ray radiographs. We have implemented three different binary classifications with four classes (COVID-19, normal (healthy), viral pneumonia and bacterial pneumonia) by using five-fold cross-validation. Considering the performance results obtained, it has been seen that the pre-trained ResNet50 model provides the highest classification performance (96.1% accuracy for Dataset-1, 99.5% accuracy for Dataset-2 and 99.7% accuracy for Dataset-3) among other four used models.

  相似文献   

3.
Singh  Dilbag  Kumar  Vijay  Kaur  Manjit 《Applied Intelligence》2021,51(5):3044-3051

The extensively utilized tool to detect novel coronavirus (COVID-19) is a real-time polymerase chain reaction (RT-PCR). However, RT-PCR kits are costly and consume critical time, around 6 to 9 hours to classify the subjects as COVID-19(+) or COVID-19(-). Due to the less sensitivity of RT-PCR, it suffers from high false-negative results. To overcome these issues, many deep learning models have been implemented in the literature for the early-stage classification of suspected subjects. To handle the sensitivity issue associated with RT-PCR, chest CT scans are utilized to classify the suspected subjects as COVID-19 (+), tuberculosis, pneumonia, or healthy subjects. The extensive study on chest CT scans of COVID-19 (+) subjects reveals that there are some bilateral changes and unique patterns. But the manual analysis from chest CT scans is a tedious task. Therefore, an automated COVID-19 screening model is implemented by ensembling the deep transfer learning models such as Densely connected convolutional networks (DCCNs), ResNet152V2, and VGG16. Experimental results reveal that the proposed ensemble model outperforms the competitive models in terms of accuracy, f-measure, area under curve, sensitivity, and specificity.

  相似文献   

4.
Severe Coronavirus Disease 2019 (COVID-19) has been a global pandemic which provokes massive devastation to the society, economy, and culture since January 2020. The pandemic demonstrates the inefficiency of superannuated manual detection approaches and inspires novel approaches that detect COVID-19 by classifying chest x-ray (CXR) images with deep learning technology. Although a wide range of researches about bran-new COVID-19 detection methods that classify CXR images with centralized convolutional neural network (CNN) models have been proposed, the latency, privacy, and cost of information transmission between the data resources and the centralized data center will make the detection inefficient. Hence, in this article, a COVID-19 detection scheme via CXR images classification with a lightweight CNN model called MobileNet in edge computing is proposed to alleviate the computing pressure of centralized data center and ameliorate detection efficiency. Specifically, the general framework is introduced first to manifest the overall arrangement of the computing and information services ecosystem. Then, an unsupervised model DCGAN is employed to make up for the small scale of data set. Moreover, the implementation of the MobileNet for CXR images classification is presented at great length. The specific distribution strategy of MobileNet models is followed. The extensive evaluations of the experiments demonstrate the efficiency and accuracy of the proposed scheme for detecting COVID-19 over CXR images in edge computing.  相似文献   

5.
Recently, COVID-19 has posed a challenging threat to researchers, scientists, healthcare professionals, and administrations over the globe, from its diagnosis to its treatment. The researchers are making persistent efforts to derive probable solutions for managing the pandemic in their areas. One of the widespread and effective ways to detect COVID-19 is to utilize radiological images comprising X-rays and computed tomography (CT) scans. At the same time, the recent advances in machine learning (ML) and deep learning (DL) models show promising results in medical imaging. Particularly, the convolutional neural network (CNN) model can be applied to identifying abnormalities on chest radiographs. While the epidemic of COVID-19, much research is led on processing the data compared with DL techniques, particularly CNN. This study develops an improved fruit fly optimization with a deep learning-enabled fusion (IFFO-DLEF) model for COVID-19 detection and classification. The major intention of the IFFO-DLEF model is to investigate the presence or absence of COVID-19. To do so, the presented IFFO-DLEF model applies image pre-processing at the initial stage. In addition, the ensemble of three DL models such as DenseNet169, EfficientNet, and ResNet50, are used for feature extraction. Moreover, the IFFO algorithm with a multilayer perceptron (MLP) classification model is utilized to identify and classify COVID-19. The parameter optimization of the MLP approach utilizing the IFFO technique helps in accomplishing enhanced classification performance. The experimental result analysis of the IFFO-DLEF model carried out on the CXR image database portrayed the better performance of the presented IFFO-DLEF model over recent approaches.  相似文献   

6.
7.
This paper demonstrates empirical research on using convolutional neural networks (CNN) of deep learning techniques to classify X-rays of COVID-19 patients versus normal patients by feature extraction. Feature extraction is one of the most significant phases for classifying medical X-rays radiography that requires inclusive domain knowledge. In this study, CNN architectures such as VGG-16, VGG-19, RestNet50, RestNet18 are compared, and an optimized model for feature extraction in X-ray images from various domains involving several classes is proposed. An X-ray radiography classifier with TensorFlow GPU is created executing CNN architectures and our proposed optimized model for classifying COVID-19 (Negative or Positive). Then, 2,134 X-rays of normal patients and COVID-19 patients generated by an existing open-source online dataset were labeled to train the optimized models. Among those, the optimized model architecture classifier technique achieves higher accuracy (0.97) than four other models, specifically VGG-16, VGG-19, RestNet18, and RestNet50 (0.96, 0.72, 0.91, and 0.93, respectively). Therefore, this study will enable radiologists to more efficiently and effectively classify a patient’s coronavirus disease.  相似文献   

8.
The new coronavirus(COVID-19),declared by the World Health Organization as a pandemic,has infected more than 1 million people and killed more than 50 thousand.An infection caused by COVID-19 can develop into pneumonia,which can be detected by a chest X-ray exam and should be treated appropriately.In this work,we propose an automatic detection method for COVID-19 infection based on chest X-ray images.The datasets constructed for this study are composed of194 X-ray images of patients diagnosed with coronavirus and 194 X-ray images of healthy patients.Since few images of patients with COVID-19 are publicly available,we apply the concept of transfer learning for this task.We use different architectures of convolutional neural networks(CNNs)trained on Image Net,and adapt them to behave as feature extractors for the X-ray images.Then,the CNNs are combined with consolidated machine learning methods,such as k-Nearest Neighbor,Bayes,Random Forest,multilayer perceptron(MLP),and support vector machine(SVM).The results show that,for one of the datasets,the extractor-classifier pair with the best performance is the Mobile Net architecture with the SVM classifier using a linear kernel,which achieves an accuracy and an F1-score of 98.5%.For the other dataset,the best pair is Dense Net201 with MLP,achieving an accuracy and an F1-score of 95.6%.Thus,the proposed approach demonstrates efficiency in detecting COVID-19 in X-ray images.  相似文献   

9.
The Corona Virus Disease 2019 (COVID-19) has been declared a worldwide pandemic, and a key method for diagnosing COVID-19 is chest X-ray imaging. The application of convolutional neural network with medical imaging helps to diagnose the disease accurately, where the label quality plays an important role in the classification problem of COVID-19 chest X-rays. However, most of the existing classification methods ignore the problem that the labels are hardly completely true and effective, and noisy labels lead to a significant degradation in the performance of image classification frameworks. In addition, due to the wide distribution of lesions and the large number of local features of COVID-19 chest X-ray images, existing label recovery algorithms have to face the bottleneck problem of the difficult reuse of noisy samples. Therefore, this paper introduces a general classification framework for COVID-19 chest X-ray images with noisy labels and proposes a noisy label recovery algorithm based on subset label iterative propagation and replacement (SLIPR). Specifically, the proposed algorithm first obtains random subsets of the samples multiple times. Then, it integrates several techniques such as principal component analysis, low-rank representation, neighborhood graph regularization, and k-nearest neighbor for feature extraction and image classification. Finally, multi-level weight distribution and replacement are performed on the labels to cleanse the noise. In addition, for the label-recovered dataset, high confidence samples are further selected as the training set to improve the stability and accuracy of the classification framework without affecting its inherent performance. In this paper, three typical datasets are chosen to conduct extensive experiments and comparisons of existing algorithms under different metrics. Experimental results on three publicly available COVID-19 chest X-ray image datasets show that the proposed algorithm can effectively recover noisy labels and improve the accuracy of the image classification framework by 18.9% on the Tawsifur dataset, 19.92% on the Skytells dataset, and 16.72% on the CXRs dataset. Compared to the state-of-the-art algorithms, the gain of classification accuracy of SLIPR on the three datasets can reach 8.67%-19.38%, and the proposed algorithm also has certain scalability while ensuring data integrity.  相似文献   

10.
Guefrechi  Sarra  Jabra  Marwa Ben  Ammar  Adel  Koubaa  Anis  Hamam  Habib 《Multimedia Tools and Applications》2021,80(21-23):31803-31820

The whole world is facing a health crisis, that is unique in its kind, due to the COVID-19 pandemic. As the coronavirus continues spreading, researchers are concerned by providing or help provide solutions to save lives and to stop the pandemic outbreak. Among others, artificial intelligence (AI) has been adapted to address the challenges caused by pandemic. In this article, we design a deep learning system to extract features and detect COVID-19 from chest X-ray images. Three powerful networks, namely ResNet50, InceptionV3, and VGG16, have been fine-tuned on an enhanced dataset, which was constructed by collecting COVID-19 and normal chest X-ray images from different public databases. We applied data augmentation techniques to artificially generate a large number of chest X-ray images: Random Rotation with an angle between ??10 and 10 degrees, random noise, and horizontal flips. Experimental results are encouraging: the proposed models reached an accuracy of 97.20?% for Resnet50, 98.10?% for InceptionV3, and 98.30?% for VGG16 in classifying chest X-ray images as Normal or COVID-19. The results show that transfer learning is proven to be effective, showing strong performance and easy-to-deploy COVID-19 detection methods. This enables automatizing the process of analyzing X-ray images with high accuracy and it can also be used in cases where the materials and RT-PCR tests are limited.

  相似文献   

11.
Aim: COVID-19 is a disease caused by a new strain of coronavirus. Up to 18th October 2020, worldwide there have been 39.6 million confirmed cases resulting in more than 1.1 million deaths. To improve diagnosis, we aimed to design and develop a novel advanced AI system for COVID-19 classification based on chest CT (CCT) images.Methods: Our dataset from local hospitals consisted of 284 COVID-19 images, 281 community-acquired pneumonia images, 293 secondary pulmonary tuberculosis images; and 306 healthy control images. We first used pretrained models (PTMs) to learn features, and proposed a novel (L, 2) transfer feature learning algorithm to extract features, with a hyperparameter of number of layers to be removed (NLR, symbolized as L). Second, we proposed a selection algorithm of pretrained network for fusion to determine the best two models characterized by PTM and NLR. Third, deep CCT fusion by discriminant correlation analysis was proposed to help fuse the two features from the two models. Micro-averaged (MA) F1 score was used as the measuring indicator. The final determined model was named CCSHNet.Results: On the test set, CCSHNet achieved sensitivities of four classes of 95.61%, 96.25%, 98.30%, and 97.86%, respectively. The precision values of four classes were 97.32%, 96.42%, 96.99%, and 97.38%, respectively. The F1 scores of four classes were 96.46%, 96.33%, 97.64%, and 97.62%, respectively. The MA F1 score was 97.04%. In addition, CCSHNet outperformed 12 state-of-the-art COVID-19 detection methods.Conclusions: CCSHNet is effective in detecting COVID-19 and other lung infectious diseases using first-line clinical imaging and can therefore assist radiologists in making accurate diagnoses based on CCTs.  相似文献   

12.
由于影像学技术在新型冠状病毒肺炎(COVID-19)的诊断和评估中发挥了重要作用,COVID-19相关数据集陆续被公布,但目前针对相关文献中数据集以及研究进展的整理相对较少。为此,通过COVID-19相关的期刊论文、报告和相关开源数据集网站,对涉及到的新冠肺炎数据集及深度学习模型进行整理和分析,包括计算机断层扫描(CT)图像数据集和X射线(CXR)图像数据集。对这些数据集呈现的医学影像的特征进行分析;重点论述开源数据集,以及在相关数据集上表现较好的分类和分割模型。最后讨论了肺部影像学技术未来的发展趋势。  相似文献   

13.
Huang  Zhenxing  Liu  Xinfeng  Wang  Rongpin  Zhang  Mudan  Zeng  Xianchun  Liu  Jun  Yang  Yongfeng  Liu  Xin  Zheng  Hairong  Liang  Dong  Hu  Zhanli 《Applied Intelligence》2021,51(5):2838-2849

The novel coronavirus (COVID-19) pneumonia has become a serious health challenge in countries worldwide. Many radiological findings have shown that X-ray and CT imaging scans are an effective solution to assess disease severity during the early stage of COVID-19. Many artificial intelligence (AI)-assisted diagnosis works have rapidly been proposed to focus on solving this classification problem and determine whether a patient is infected with COVID-19. Most of these works have designed networks and applied a single CT image to perform classification; however, this approach ignores prior information such as the patient’s clinical symptoms. Second, making a more specific diagnosis of clinical severity, such as slight or severe, is worthy of attention and is conducive to determining better follow-up treatments. In this paper, we propose a deep learning (DL) based dual-tasks network, named FaNet, that can perform rapid both diagnosis and severity assessments for COVID-19 based on the combination of 3D CT imaging and clinical symptoms. Generally, 3D CT image sequences provide more spatial information than do single CT images. In addition, the clinical symptoms can be considered as prior information to improve the assessment accuracy; these symptoms are typically quickly and easily accessible to radiologists. Therefore, we designed a network that considers both CT image information and existing clinical symptom information and conducted experiments on 416 patient data, including 207 normal chest CT cases and 209 COVID-19 confirmed ones. The experimental results demonstrate the effectiveness of the additional symptom prior information as well as the network architecture designing. The proposed FaNet achieved an accuracy of 98.28% on diagnosis assessment and 94.83% on severity assessment for test datasets. In the future, we will collect more covid-CT patient data and seek further improvement.

  相似文献   

14.
Li  Daqiu  Fu  Zhangjie  Xu  Jun 《Applied Intelligence》2021,51(5):2805-2817

With the outbreak of COVID-19, medical imaging such as computed tomography (CT) based diagnosis is proved to be an effective way to fight against the rapid spread of the virus. Therefore, it is important to study computerized models for infectious detection based on CT imaging. New deep learning-based approaches are developed for CT assisted diagnosis of COVID-19. However, most of the current studies are based on a small size dataset of COVID-19 CT images as there are less publicly available datasets for patient privacy reasons. As a result, the performance of deep learning-based detection models needs to be improved based on a small size dataset. In this paper, a stacked autoencoder detector model is proposed to greatly improve the performance of the detection models such as precision rate and recall rate. Firstly, four autoencoders are constructed as the first four layers of the whole stacked autoencoder detector model being developed to extract better features of CT images. Secondly, the four autoencoders are cascaded together and connected to the dense layer and the softmax classifier to constitute the model. Finally, a new classification loss function is constructed by superimposing reconstruction loss to enhance the detection accuracy of the model. The experiment results show that our model is performed well on a small size COVID-2019 CT image dataset. Our model achieves the average accuracy, precision, recall, and F1-score rate of 94.7%, 96.54%, 94.1%, and 94.8%, respectively. The results reflect the ability of our model in discriminating COVID-19 images which might help radiologists in the diagnosis of suspected COVID-19 patients.

  相似文献   

15.

There are many solutions to prevent the spread of the COVID-19 virus and one of the most effective solutions is wearing a face mask. Almost everyone is wearing face masks at all times in public places during the coronavirus pandemic. This encourages us to explore face mask detection technology to monitor people wearing masks in public places. Most recent and advanced face mask detection approaches are designed using deep learning. In this article, two state-of-the-art object detection models, namely, YOLOv3 and faster R-CNN are used to achieve this task. The authors have trained both the models on a dataset that consists of images of people of two categories that are with and without face masks. This work proposes a technique that will draw bounding boxes (red or green) around the faces of people, based on whether a person is wearing a mask or not, and keeps the record of the ratio of people wearing face masks on the daily basis. The authors have also compared the performance of both the models i.e., their precision rate and inference time.

  相似文献   

16.
目的 卫星图像往往目标、背景复杂而且带有噪声,因此使用人工选取的特征进行卫星图像的分类就变得十分困难。提出一种新的使用卷积神经网络进行卫星图像分类的方案。使用卷积神经网络可以提取卫星图像的高层特征,进而提高卫星图像分类的识别率。方法 首先,提出一个包含六类图像的新的卫星图像数据集来解决卷积神经网络的有标签训练样本不足的问题。其次,使用了一种直接训练卷积神经网络模型和3种预训练卷积神经网络模型来进行卫星图像分类。直接训练模型直接在文章提出的数据集上进行训练,预训练模型先在ILSVRC(the ImageNet large scale visual recognition challenge)-2012数据集上进行预训练,然后在提出的卫星图像数据集上进行微调训练。完成微调的模型用于卫星图像分类。结果 提出的微调预训练卷积神经网络深层模型具有最高的分类正确率。在提出的数据集上,深层卷积神经网络模型达到了99.50%的识别率。在数据集UC Merced Land Use上,深层卷积神经网络模型达到了96.44%的识别率。结论 本文提出的数据集具有一般性和代表性,使用的深层卷积神经网络模型具有很强的特征提取能力和分类能力,且是一种端到端的分类模型,不需要堆叠其他模型或分类器。在高分辨卫星图像的分类上,本文模型和对比模型相比取得了更有说服力的结果。  相似文献   

17.
新型冠状病毒肺炎(COVID-19)具有高传染性和高致病性,严重威胁人民群众的生命安全和身体健康,快速准确地检测和诊断COVID-19对于疫情控制至关重要.目前COVID-19检测诊断方法主要包括核酸检测和基于医学影像的人工诊断,但是核酸检测耗时较长并且需要专用的测试盒,而基于医学影像的人工诊断过于依赖专业知识,分析耗...  相似文献   

18.
Coronavirus disease 2019 (Covid-19) is a life-threatening infectious disease caused by a newly discovered strain of the coronaviruses. As by the end of 2020, Covid-19 is still not fully understood, but like other similar viruses, the main mode of transmission or spread is believed to be through droplets from coughs and sneezes of infected persons. The accurate detection of Covid-19 cases poses some questions to scientists and physicians. The two main kinds of tests available for Covid-19 are viral tests, which tells you whether you are currently infected and antibody test, which tells if you had been infected previously. Routine Covid-19 test can take up to 2 days to complete; in reducing chances of false negative results, serial testing is used. Medical image processing by means of using Chest X-ray images and Computed Tomography (CT) can help radiologists detect the virus. This imaging approach can detect certain characteristic changes in the lung associated with Covid-19. In this paper, a deep learning model or technique based on the Convolutional Neural Network is proposed to improve the accuracy and precisely detect Covid-19 from Chest Xray scans by identifying structural abnormalities in scans or X-ray images. The entire model proposed is categorized into three stages: dataset, data pre-processing and final stage being training and classification.  相似文献   

19.
新型冠状病毒肺炎的高感染率导致其在全球范围内迅速传播,常用的逆转录-聚合酶反应(RT-PCR)检测方法存在耗时、假阴性率偏高和医学用具不足的缺陷,因此开发高效、准确、低成本的影像检测技术对新型冠状病毒肺炎的诊断和治疗至关重要。随着人工智能在医学领域的成功应用,深度学习技术成为辅助检验和识别新型冠状病毒肺炎的有效方法。对近年来涌现的新型冠状病毒肺炎的深度学习诊断方法进行了研究和总结:介绍了深度学习方法使用的两种新型冠状病毒肺炎数据集;介绍了基于VGGNet、Inception、ResNet、DenseNet、EfficientNet和CapsNet模型的六种深度学习诊断方法;介绍了三种深度学习与其他机器学习方法结合的诊断方法;对基于深度学习的新型冠状病毒肺炎诊断方法的研究趋势进行了展望。  相似文献   

20.
目的 新型冠状病毒肺炎(corona virus disease 2019, COVID-19)患者肺部计算机断层扫描(computed tomography, CT)图像具有明显的病变特征,快速而准确地从患者肺部CT图像中分割出病灶部位,对COVID-19患者快速诊断和监护具有重要意义。COVID-19肺炎病灶区域复杂多变,现有方法分割精度不高,且对假阴性的关注不够,导致分割结果往往具有较高的特异度,但灵敏度却很低。方法 本文提出了一个基于深度学习的多尺度编解码网络(MED-Net(multiscale encode decode network)),该网络采用资源利用率高、计算速度快的HarDNet68(harmonic densely connected network)作为主干,它主要由5个harmonic dense block(HDB)组成,首先通过5个空洞空间卷积池化金字塔(atrous spatial pyramid pooling, ASPP)对HarDNet68的第1个卷积层和第1、3、4、5个HDB提取多尺度特征。接着在并行解码器(paralleled parti...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号