首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A simple dual-band microstrip-fed printed antenna for WLAN applications   总被引:1,自引:0,他引:1  
A novel microstrip-fed dual-band printed antenna for wireless local area network (WLAN) is presented. The antenna comprises a rectangular and a circular radiating element, which generate two resonant modes to cover 2.4/5.2/5.8 GHz WLAN bands. The design was experimentally verified by constructing the antenna on a FR4 (ϵr = 4.4) dielectric substrate (47 mm x 26 mm x 0.76 mm) and measuring its impedance and radiation characteristics at both the bands. The measured 10 dB return loss (VSWR 2:1) bandwidth in the 2.4G Hz band is 550 MHz (2.1?2.65 GHz) and it covers the bandwidth required for 2.4 GHz WLAN. The 5.2/5.8 GHz resonant mode has a bandwidth of 950 MHz (5.15?6.1 GHz) covering 5.2/5.8 GHz WLAN bands. A rigorous experimental evaluation confirmed that the dual-band printed antenna maintained good radiation characteristics with minimum cross-polarisation levels.  相似文献   

2.
A compact wideband printed slot antenna, suitable for wireless local area network (WLAN) and satisfying the worldwide interoperability for microwave access (WiMAX) applications, is proposed here. The antenna is microstrip-fed and its structure is based on Koch fractal geometry where the resonance frequency of a conventional triangular slot antenna is lowered by applying Koch iterations. The antenna size inclusive of the ground plane is compact and has a wide operating bandwidth. The proposed second iteration Koch slot antenna operates from 2.33 to 6.19 GHz covering the 2.4/5.2/5.8 GHz WLAN bands and 2.5/3.5/5.5 GHz WiMAX bands. The antenna exhibits omnidirectional radiation coverage with a gain better than 2.0 dBi in the entire operating band. Design equations for the proposed antenna are developed and their validity is confirmed on different substrates and for different slot sizes.  相似文献   

3.
In this paper, a unit cell of a single-negative metamaterial structure loaded with a meander line and defected ground structure (DGS) is investigated as the principle radiating element of an antenna. The unit cell antenna causes even or odd mode resonances similar to the unit cell structure depending on the orientation of the microstrip feed used to excite the unit cell. However, the orientation which gives low-frequency resonance is considered here. The unit cell antenna is then loaded with a meander line which is parallel to the split bearing side and connects the other two sides orthogonal to the split bearing side. This modified structure excites another mode of resonance at high frequency when a meander line defect is loaded on the metallic ground plane. Specific parameters of the meander line structure, the DGS shape, and the unit cell are optimized to place these two resonances at different frequencies with proper frequency intervals to enhance the bandwidth. Finally, the feed is placed in an offset position for better impedance matching without affecting the bandwidth The compact dimension of the antenna is 0.25 λL × 0.23 λL × 0.02 λL, where λL is the free space wavelength with respect to the center frequency of the impedance bandwidth. The proposed antenna is fabricated and measured. Experimental results reveal that the modified design gives monopole like radiation patterns which achieves a fractional operating bandwidth of 26.6%, from 3.26 to 4.26 GHz for |S11|<−10 dB and a pick gain of 1.26 dBi is realized. In addition, the simulated and measured cross-polarization levels are both less than −15 dB in the horizontal plane.  相似文献   

4.
Due to rapid growth in wireless communication technology, higher bandwidth requirement for advance telecommunication systems, capable of operating on two or higher bands with higher channel capacities and minimum distortion losses is desired. In this paper, a compact Ultra-Wideband (UWB) V-shaped monopole antenna is presented. UWB response is achieved by modifying the ground plane with Chichen Itzia inspired rectangular staircase shape. The proposed V-shaped is designed by incorporating a rectangle, and an inverted isosceles triangle using FR4 substrate. The size of the antenna is 25 mm×26 mm×1.6 mm. The proposed V-shaped monopole antenna produces bandwidth response of 3 GHz Industrial, Scientific, and Medical (ISM), Worldwide Interoperability for Microwave Access (WiMAX), (IEEE 802.11/HIPERLAN band, 5G sub 6 GHz) which with an additional square cut amplified the bandwidth response up to 8 GHz ranging from 3.1 GHz to 10.6 GHz attaining UWB defined by Federal Communications Commission (FCC) with a maximum gain of 3.83 dB. The antenna is designed in Ansys HFSS. Results for key performance parameters of the antenna are presented. The measured results are in good agreement with the simulated results. Due to flat gain, uniform group delay, omni directional radiation pattern characteristics and well-matched impedance, the proposed antenna is suitable for WiMAX, ISM and heterogeneous wireless systems.  相似文献   

5.
With the help of in-body antennas, the wireless communication among the implantable medical devices (IMDs) and exterior monitoring equipment, the telemetry system has brought us many benefits. Thus, a very thin-profile circularly polarized (CP) in-body antenna, functioning in ISM band at 2.45 GHz, is proposed. A tapered coplanar waveguide (CPW) method is used to excite the antenna. The radiator contains a pentagonal shape with five horizontal slits inside to obtain a circular polarization behavior. A bendable Roger Duroid RT5880 material (εr = 2.2, tanδ = 0.0009) with a typical 0.25 mm-thickness is used as a substrate. The proposed antenna has a total volume of 21 × 13 × 0.25 mm3. The antenna covers up a bandwidth of 2.38 to 2.53 GHz (150 MHz) in vacuum, while in skin tissue it covers 1.56 to 2.72 GHz (1.16 GHz) and in the muscle tissue covers 2.16 to 3.17 GHz (1.01 GHz). GHz). The flexion analysis in the x and y axes was also performed in simulation as the proposed antenna works with a wider bandwidth in the skin and muscle tissue. The simulation and the curved antenna measurements turned out to be in good agreement. The impedance bandwidth of −10 dB and the axis ratio bandwidth of 3 dB (AR) are measured on the skin and imitative gel of the pig at 27.78% and 35.5%, 13.5% and 4.9%, respectively, at a frequency of 2.45 GHz. The simulations revealed that the specific absorption rate (SAR) in the skin is 0.634 and 0.914 W/kg in muscle on 1g-tissue. The recommended SAR values are below the limits set by the federal communications commission (FCC). Finally, the proposed low-profile implantable antenna has achieved very compact size, flexibility, lower SAR values, high gain, higher impedance and axis ratio bandwidths in the skin and muscle tissues of the human body. This antenna is smaller in size and a good applicant for application in medical implants.  相似文献   

6.
In this paper, the design and experimental evaluation of a hexagonal-shaped coplanar waveguide (CPW)-feed frequency reconfigurable antenna is presented using flame retardant (FR)-4 substrate with size of 37 × 35 × 1.6 mm3. The antenna is made tunable to three different modes through the status of two pin diodes to operate in four distinct frequency bands, i.e., 2.45 GHz wireless fidelity (Wi-Fi) in MODE 1, 3.3 GHz (5G sub-6 GHz band) in MODE 2, 2.1 GHz (3G Long Term Evolution (LTE)-advanced) and 3.50 GHz Worldwide Interoperability for Microwave Access (WiMAX) in MODE 3. The optimization through simulation modeling shows that the proposed antenna can provide adequate gain (1.44~2.2 dB), sufficient bandwidth (200~920 MHz) and high radiation efficiency (80%~95%) in the four resonating frequency bands. Voltage standing wave ratio (VSWR) < 1.5 is achieved for all bands with properly matched characteristics of the antenna. To validate the simulation results, fabrication of the proposed optimized design is performed, and experimental analysis is found to be in a considerable amount of agreement. Due to its reasonably small size and support of multiple frequency bands operation, the proposed antenna can support portable devices for handheld 5G and Wireless LAN (WLAN) applications.  相似文献   

7.
This paper presents a compact Multiple Input Multiple Output (MIMO) antenna with WLAN band notch for Ultra-Wideband (UWB) applications. The antenna is designed on 0.8 mm thick low-cost FR-4 substrate having a compact size of 22 mm × 30 mm. The proposed antenna comprises of two monopole patches on the top layer of substrate while having a shared ground on its bottom layer. The mutual coupling between adjacent patches has been reduced by using a novel stub with shared ground structure. The stub consists of complementary rectangular slots that disturb the surface current direction and thus result in reducing mutual coupling between two ports. A slot is etched in the radiating patch for WLAN band notch. The slot is used to suppress frequencies ranging from 5.1 to 5.9 GHz. The results show that the proposed antenna has a very good impedance bandwidth of |S11| < −10 dB within the frequency band from 3.1–14 GHz. A low mutual coupling of less than −23 dB is achieved within the entire UWB band. Furthermore, the antenna has a peak gain of 5.8 dB, low ECC < 0.002 and high Diversity Gain (DG > 9.98).  相似文献   

8.
A compact dual-band printed wire antenna for applications in wireless communications is presented. An additional shorted parasitic element to the F-shaped wire antenna is introduced to achieve a dual-band operation. As an example, a new antenna was designed and fabricated for wireless local area network applications that operate in the 2.4 and 5.2/5.8 GHz bands. The prototyped antenna offered two separate measured impedance bandwidths of 700 (2.35-3.05 GHz) and 2150 MHz (3.95-6.1 GHz), for a return loss less than -10 dB. A measured antenna gain of 1.78-1.9 dBi was observed across the lower band, whereas a measured antenna gain of 3.9-4.4 dBi was observed across the upper band. The measured radiation patterns were stable across the passband  相似文献   

9.
A compact, reconfigurable antenna supporting multiple wireless services with a minimum number of switches is found lacking in literature and the same became the focus and outcome of this work. It was achieved by designing a Th-Shaped frequency reconfigurable multi-band microstrip planar antenna, based on use of a single switch within the radiating structure of the antenna. Three frequency bands (i.e., 2007–2501 MHz, 3660–3983 MHz and 9341–1046 MHz) can be operated with the switch in the ON switch state. In the OFF state of the switch, the antenna operates within the 2577–3280 MHz and 9379–1033 MHz Bands. The proposed antenna shows an acceptable input impedance match with Voltage Standing Wave Ratio (VSWR) less than 1.2. The peak radiation efficiency of the antenna is 82%. A reasonable gain is obtained from 1.22 to 3.31 dB within the operating bands is achieved. The proposed antenna supports Universal Mobile Telecommunication System (UMTS)-1920 to 2170 MHz, Worldwide Interoperability and Microwave Access (WiMAX)/Wireless Broadband/(Long Term Evolution) LTE2500–2500 to 2690 MHz, Fifth Generation (5G)-2500/3500 MHz, Wireless Fidelity (Wi-Fi)/ Bluetooth-2400 to 2480 MHz, and Satellite communication applications in X-Band-8000 to 12000 MHz. The overall planar dimension of the proposed antenna is 40 × 20 mm2. The antenna was designed, along with the parametric study, using Electromagnetic (EM) simulation tool. The antenna prototype is fabricated for experimental validation with the simulated results. The proposed antenna is low profile, tunable, lightweight, cheap to fabricate and highly efficient and hence is deemed suitable for use in modern wireless communication electronic devices.  相似文献   

10.
In this study, a compact 2 × 2 interlaced sequentially rotated dual-polarized dielectric-resonator antenna array is proposed for 5.8 GHz applications. The array is composed of a novel unit elements that are made of rectangular dielectric resonator (RDR) coupled to an eye slot for generating the orthogonal modes, and to acquire circular polarization (CP) radiation. For the purpose of miniaturization and achieving dual polarized resonance, the array is fed by two interlaced ports and each port excites two radiating elements. The first port feeds horizontal elements to obtain left hand circular polarization (LHCP). The second port feeds vertical elements to obtain right hand circular polarization (RHCP). A quarter-wave length transformer is employed to reduce the attenuation and consequently increase the array gain performance. The 35 × 35 mm2 () gains were 8.4 and 8.2 dBi for port 1 and port 2, respectively, with port isolations of −33.51 dB. The design achieves a voltage standing-wave ratio (VSWR) < −10 dB and an axial ratio (AR) ˂ − 3 dB bandwidth of 2.48% (5.766 to 5.911 GHz) for LHCP at port 1 and a VSWR < −10 dB and AR ˂ −3 dB bandwidth of 2.28% (5.788 to 5.922 GHz) for RHCP at port 2. The findings of the proposed design validate its use for ISM band applications.  相似文献   

11.
提出一种应用于Wi-Fi/WiMAX的宽带高增益双极化阵列天线.它由+45°和-45°正交极化的两个天线组成。当频率为2.38~2.72 GHz时,天线的回波损耗大于-10 dB;端口1与端口2之间隔离度大于20 dB;端口1在2.45 GHz时获得最大增益为17.14 dBi,端口2在2.483 GHz时获得最大增益为17.15 dBi.仿真和测试很好相吻合,该双极化天线能满足Wi-Fi/WiMAX通信网络要求.  相似文献   

12.
设计了一种应用于WLAN的具有低交叉极化和高隔离度的双极化天线.天线由3层功能层和2层介质基板间隔层叠而成.3层功能层分别为1个方形辐射贴片,2个带有发夹谐振器的馈电网络和1个刻蚀H形缝隙的接地板.发夹谐振器和辐射贴片构成一个二阶滤波天线用以展宽天线的带宽.通过在接地板上蚀刻H形缝隙降低了天线端口间的耦合电流,改善了天...  相似文献   

13.
This article introduces a novel, ultrawideband (UWB) planar monopole antenna printed on Roger RT/5880 substrate in a compact size for small Internet of Things (IoT) applications. The total electrical dimensions of the proposed compact UWB antenna are 0.19 λo × 0.215 λo × 0.0196 λo with the overall physical sizes of 15 mm × 17 mm × 1.548 mm at the lower resonance frequency of 3.8 GHz. The planar monopole antenna is fed through the linearly tapered microstrip line on a partially structured ground plane to achieve optimum impedance matching for UWB operation. The proposed compact UWB antenna has an operation bandwidth of 9.53 GHz from 3.026 GHz up to 12.556 GHz at −10 dB return loss with a fractional bandwidth (FBW) of about 122%. The numerically computed and experimentally measured results agree well in between. A detailed time-domain analysis is additionally accomplished to verify the radiation efficiency of the proposed antenna design for the ultra-wideband signal propagation. The fabricated prototype of a compact UWB antenna exhibits an omnidirectional radiation pattern with the low peak measured gain required of 2.55 dBi at 10 GHz and promising radiation efficiency of 90%. The proposed compact planar antenna has technical potential to be utilized in UWB and IoT applications.  相似文献   

14.
This paper proposes a new dielectric resonator antenna (DRA) design that can generate circularly polarized (CP) triple-band signals. A triple-band CP DRA antenna fed by a probe feed system is achieved with metal strips structure on side of DRA structure. The design start with conventional rectangular DRA with F shaped metal strips on DRA structure alongside the feed. Then, the F metal strip is enhanced by extending the length of the metal strip to obtain wider impedance bandwidth. Further improvement on the antenna performance is observed by improvised the conventional DRA structure. The method of removing part of DRA bottom resulted to higher antenna gain with triple band CP. The primary features of the proposed DRA include wide impedance matching bandwidth (BW) and broadband circular polarization (CP). The primary features of the proposed DRA include wide impedance matching bandwidth (BW) and broadband circular polarization (CP). The CP BW values recorded by the proposed antenna were ∼ 11.27% (3.3–3.65 GHz), 12.18% (4.17–4.69 GHz), and 1.74% (6.44–6.55 GHz) for impedance-matching BW values of 35.4% (3.3–4.69 GHz), 1.74% (5.36–5.44 GHz), and 1.85% (6.41–6.55 GHz) with peak gains of 6.8 dBic, 7.6 dBic, and 8.5 dBic, respectively, in the lower, central, and upper bands. The prototype of the proposed antenna geometry was fabricated and measured. A good agreement was noted between the simulated and the measured results.  相似文献   

15.
A simple and compact coplanar waveguide (CPW)-fed ultra-wideband (UWB) monopole-like slot antenna is presented. The proposed antenna comprises a monopole-like slot and a CPW fork-shaped feeding structure, which is etched onto an FR4 printed circuit board (PCB) with an overall size of 26 mm x 29 mm x 1.5 mm. The simulation and experiment show that the proposed antenna achieves good impedance matching, consistent gain, stable radiation patterns and consistent group delay over an operating bandwidth of 2.7?12.4 GHz (128.5%). Furthermore, through adding two more grounded open-circuited stubs, the proposed antenna design features band-notched characteristic in the band of 5?6 GHz while maintaining the desirable performance over lower/upper UWB bands of 3.1?4.85 GHz/6.2?9.7 GHz.  相似文献   

16.
A broadband comb-shaped monopole antenna is proposed. The antenna has dimensions of 19 mm x 12 mm. The measured results show good agreement with the numerical prediction, and broadband operation with 10 dB impedance bandwidth of 44.75% (1.7-2.68 GHz). The antenna is built on one side of a flexible-printed circuit board (PCB) dielectric substrate. Folded and rolled antenna structures, which are transformed by the proposed planar antenna structure, are presented. Each antenna has a broadband impedance bandwidth that covers the PCS, UMTS, WiBro, WLAN and SDMB bands. Also, omni-directional radiation patterns over the operating bands have been obtained. The proposed antennas are suitable for mobile communication applications requiring a small antenna.  相似文献   

17.
Abstract: A novel coplanar waveguide (CPW)-fed ultra-wideband wide slot antenna is proposed. Because of the round corner of the rectangular slot and partial circular patch, the bandwidth of the antenna is enhanced largely. Good agreement between the measurement and simulation has been achieved. The results show that the impedance bandwidth of the antenna reaches up to 4.5-15.5 GHz for S11 < -15 dB and 2.5-18 GHz for S11 < -10 dB. Meanwhile, a good omni-directional radiation performance has also been achieved.  相似文献   

18.
Metamaterials (MTM) can enhance the properties of microwaves and also exceed some limitations of devices used in technical practice. Note that the antenna is the element for realizing a microwave imaging (MWI) system since it is where signal transmission and absorption occur. Ultra-Wideband (UWB) antenna superstrates with MTM elements to ensure the signal transmitted from the antenna reaches the tumor and is absorbed by the same antenna. The lack of conventional head imaging techniques, for instance, Magnetic Resonance Imaging (MRI) and Computerized Tomography (CT)-scan, has been demonstrated in the paper focusing on the point of failure of these techniques for prompt diagnosis and portable systems. Furthermore, the importance of MWI has been addressed elaborately to portray its effectiveness and aptness for a primary tumor diagnosis. Other than that, MTM element designs have been discussed thoroughly based on their performances towards the contributions to the better image resolution of MWI with detailed reasonings. This paper proposes the novel design of a Zeroindex Split Ring Resonator (SRR) MTM element superstrate with a UWB antenna implemented in MWI systems for detecting tumor. The novel design of the MTM enables the realization of a high gain of a superstrate UWB antenna with the highest gain of 5.70 dB. Besides that, the MTM imitates the conduct of the zeroreflection phase on the resonance frequency, which does not exist. An antenna with an MTM unit is of a 7 × 4 and 10 × 5 Zero-index SRR MTM element that acts as a superstrate plane to the antenna. Apart from that, Rogers (RT5880) substrate material is employed to fabricate the designed MTM unit cell, with the following characteristics: 0.51 mm thickness, the loss tangent of 0.02, as well as the relative permittivity of 2.2, with Computer Simulation Technology (CST) performing the simulation and design. Both MTM unit cells of 7 × 4 and 10 × 5 attained 0° with respect to the reflection phase at the 2.70 GHz frequency band. The first design, MTM Antenna Design 1, consists of a 7 × 4 MTM unit cell that observed a rise of 5.70 dB with a return loss (S11) −20.007dB at 2.70 GHz frequency. The second design, MTM Antenna Design 2, consists of 10 × 5 MTM unit cells that recorded a gain of 5.66 dB, having the return loss (S11) −19.734 dB at 2.70 GHz frequency. Comparing these two MTM elements superstrates with the antenna, one can notice that the 7 × 4 MTM element shape has a low number of the unit cell with high gain and is a better choice than the 10 × 5 MTM element in realizing MTM element superstrates antenna for MWI.  相似文献   

19.
We have introduced metamaterial superstrate in microstrip-based radiating structure to increase its bandwidth. Split ring resonators are added as metamaterial metallic inclusion in superstrate of the conventional design. This changes the basic structure of the material. Material properties such as permittivity and permeability changed due to change in the structure. The change in its material properties enhances the bandwidth of the antenna. The antenna is meandered to achieve better performance at the edges which in a way improve the radiation path of the patch. Here, the proposed antenna works on three bands in the range 3–8?GHz. Maximum 60% bandwidth is enhanced in the third band. The voltage standing wave ratio and return loss (S11) of the entire three bands are shown in the paper. The antenna works on 3.51, 4.86 and 7.8?GHz. Design results are obtained by high-frequency structure simulator which is used for simulating microwave passive components.  相似文献   

20.
The authors present the results of a polygonal patch antenna for ultra-wideband applications covering a frequency band from 4.14 to 13.50 GHz. The fabricated antenna achieved a 210 dB impedance bandwidth in excess of 125% with an antenna size of 0.373λo/sub / x 0.373 xλo/sub /0.149λ/spl o/ at its centre frequency. The antenna?s impedance bandwidth is 64% higher than what is currently obtainable with state-of-the-art folded-patch techniques. The proposed patch antenna has a polygonal-shape with a rectangular slot and shorting pins. The analysis of this antenna shows that bandwidth broadening is achieved by using a rectangular slot on the patch that is fed from a folded-patch feed, whereas the reduction in antenna size is achieved through the use of two shorting pins strategically located on the radiating patch.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号