首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
冯俊杰  孙冰  石宁  高正明  孙万付 《化工进展》2021,40(11):5907-5918
多相微反应器等微通道设备具有高效、安全等优势与广阔的应用前景,其中气泡分散相的形变、聚并、破裂等诸多流体力学行为对反应体系具有非常重要的影响,然而由于微通道的尺度特征以及多相流动非均匀性、复杂性等特点,复杂限域结构内的气泡形变与破裂机理认识仍不够充分。本文针对近年来在微尺度限域结构中的气泡形变与破裂等研究进展进行综述,首先概述了微通道多相流主要研究对象及研究方法,探讨了含有颗粒等受限狭窄空间及复杂多相条件下的传递机理研究进展,总结了气泡界面演变及不稳定破裂过程的多相相间作用机制。最后,提出研究体系构建、研究方法改进、相间作用解析以及工程化需求匹配是微尺度复杂限域空间内的气泡行为研究关键,并对下一步研究方向进行了分析与展望。  相似文献   

2.
张华海  王悦琳  李邦昊  王铁峰 《化工学报》2021,72(12):5936-5954
综述了充分发展湍流中气泡破碎的机理和模型,将其机理归纳为湍流涡碰撞、黏性剪切、尾涡剪切脱落过程和界面不稳定性四类。对文献中气泡破碎速率和子气泡大小分布的预测模型进行了系统总结。分析讨论了现有气泡破碎模型的发展和局限性,并提出了未来的发展方向。同时,也综述了湍流中单气泡破碎的实验研究,依据产生湍流的方法归纳为四种情况:增大液体流速产生湍流,采用内构件产生湍流,搅拌产生湍流,以及圆锥反应器结合搅拌产生湍流。总结了现有气泡破碎实验的进展和局限,并进行了分析和展望。最后,通过将文献中气泡破碎速率模型预测值和实验数据进行对比,表明文献中多个破碎模型已经有了较好的预测能力。  相似文献   

3.
The bubble breakups in a jet bubbling reactor are captured using a high-speed camera and the velocity field is measured by particle image velocimetry. Two typical breakup patterns, jet breakup and jet-vortex breakup are observed. The breakup time interval of the jet-vortex breakup is two orders of magnitude higher than the jet breakup. The probability of the jet-vortex breakup and the jet breakup accounting in the total breakup events increases and decreases with the jet velocity and the mother bubble size, respectively. The bubble breakup region increases with the jet velocity. The bubble breakup frequency increases with the turbulent dissipation rate and the mother bubble size. The average number of daughter bubbles increases with the Weber number. An L-shaped daughter bubble size distribution is observed. Empirical correlations are established for the bubble breakup frequency, the average number of daughter bubbles and daughter bubble size distribution, and fitted well with the experimental results.  相似文献   

4.
The dynamics and breakup of bubbles in swirl-venturi bubble generator (SVBG) are explored in this work. The three-dimensional movement process and breakup phenomena of bubbles are captured by one high-speed camera system with two cameras while the distribution of swirling flow field is recorded through Particle Image Velocimetry technology. It is revealed that bubbles have two motion trajectories, which are deeply related to bubble breakup. One trajectory is that mother bubble moves upward in an axial direction of the SVBG to the diverging section, and the other trajectory is that mother bubble rotates obliquely upward to another side-wall along the radial direction. Meanwhile, binary breakup, shear-off-induced breakup, static erosive breakup, and dynamic erosive breakup are observed. For relatively high liquid Reynolds number, vortex flow regions are extended and the bubble size is reduced. Furthermore, it is worth noting that the number of microbubbles increases significantly for intensive swirling flow.  相似文献   

5.
Drop deformation and breakup were investigated in the presence of a block copolymer in step-wise simple shear flow using a home-made Couette cell connected to an Anton Paar MCR500 rheometer. Polyisobutylene (PIB) was used as the matrix, while five different molecular weights of polydimethylsiloxane (PDMS) were selected to provide drops with a relatively wide range of viscosity ratio. A block copolymer made of PDMS-PIB was used for interfacial modification of the drop-matrix system. The copolymer concentration was 2 wt% based on the drop phase. The experiments consisted in analyzing the drop shape and measuring the variation of the length to diameter ratio, L/D, both in steady state and in transient regimes till breakup. This allowed revising of the classical Grace curve that reports the variation of the critical capillary number for breakup as a function of viscosity ratio and providing also a new one for blends compatibilized with an interfacial active agent with a given molecular weight.  相似文献   

6.
In order to reduce or avoid the fluctuations from interface breakup, a meandering microchannel with curved multi-bends (44 turns) is fabricated, and investigations of scaling bubble/slug length in Taylor flow in a rectangular meandering microchannel are systematically conducted. Based on considerable experimental data, quantitative analyses for the influences of two important characteristic times, liquid phase physical properties and aspect ratio are made on the prediction criteria for the bubble/slug length of Taylor flow in a meandering microchannel. A simple principle is suggested to predict the bubble formation period by using the information of Rayleigh time and capillary time for six gas-liquid systems with average deviation of 10.96%. Considering physical properties of the liquid phase and cross-section configuration of the rectangular mcirochannel, revised scaling laws for bubble length are established by introducing Ca, We, Re and W/h whether for the squeezing-driven or shearing-driven of bubble break. In addition, a simple principle in terms of Garstecki-type model and bubble formation period is set-up to predict slug lengths. A total of 107 sets of experimental data are correlated with the meandering microchannel and operating range:0.001 < CaTP < 0.05, 0.06 < WeTP < 9.0, 18 < ReTP < 460 using the bubble/slug length prediction equation from current work. The average deviation between the correlated data and the experimental data for bubble length and slug length is about 9.42% and 9.95%, respectively.  相似文献   

7.
Liquid flow around Taylor bubbles and the motion of bubble interface in a rectangular microchannel etched on a microfluidic chip were investigated using a three-dimensional particle tracking method. The Taylor bubbles were generated by releasing the dissolved air in working the liquid (water) through heating the microfluidic chip to 35–55 °C and had low velocities (15–1500 μm/s). Three-dimensional velocity distributions of liquid recirculation flows surrounding the Taylor bubble head and tail were obtained by tracking submicron fluorescent particles seeded in the working liquid and the motion of the bubble interface was analyzed by monitoring the motions of the particles attached on the bubble interface. The high velocity film flow through the microchannel corners acted as a liquid jet in front of bubble head and drainage into the corners behind the bubble tail to drive the liquid recirculation flows. The bubble interface near the microchannel corners was also moved by the strong liquid shear induced from the high velocity liquid flow in the microchannel corners. This high velocity liquid flow through the corners could be considered to be driven by the pressure drop over the Taylor bubble. The pressure drop resulted from the decrease of bubble surface mobility due to tracer surfactant in the gas–liquid interface.  相似文献   

8.
A detailed understanding of turbulent fluid particle breakup mechanisms is essential for the accurate modeling of gas/liquid and liquid/liquid dispersions. The design of a fully automated setup for the three‐dimensional serial examination of the single bubble breakup process in a stirred tank, ensuring high repetition rates necessary for the additionally automated statistical analysis, is described. The implementation of a three‐dimensional automatic bubble breakup tracking tool is illustrated. At last, exemplary bubble breakup trajectories that show the benefits and limitations of the developed system and method are discussed.  相似文献   

9.
非对称Y型分岔微通道内气泡破裂与分配规律   总被引:1,自引:1,他引:1       下载免费PDF全文
利用高速摄像仪对气泡在非对称Y型微通道分岔口的破裂行为和分配规律进行了实验研究。采用氮气(N2)作为分散相,含0.3%表面活性剂十二烷基硫酸钠(SDS)的蒸馏水-甘油(质量分数分别为20%、40%、50%)溶液为连续相。在分岔口处观察到了3种不同的气泡行为:无间隙的不对称破裂、有间隙的不对称破裂以及不破裂。考察了气泡破裂和不破裂行为之间的转变,并与文献进行了比较。考察了两相流率及物性对破裂气泡分配规律的影响。结果表明:破裂后两个子气泡的长度均随气相流量与气泡长度的增大而增大,随液相流量和黏度的增大而减小。随液相速度和黏度的增大,气泡破裂的不对称程度减弱。  相似文献   

10.
Multicompartment hydrodynamic model for slurry bubble columns   总被引:1,自引:0,他引:1  
A core-annulus multicompartment two-dimensional two-bubble class model accounting for slurry recirculation and coupled with catalyst transport was developed as a part and parcel of the analysis of the behavior of slurry bubble column reactors at high gas throughputs corresponding to the churn turbulent flow regime. The model analyzed the contributions of bubble-induced turbulence closures, bubble coalescence and breakup phenomena, and catalyst axial distribution as the resultant of sedimentation, advection via liquid-solid slip, per-compartment axial dispersion and core-annulus lateral exchange of catalyst by bubble-induced turbulence. The model was also used to analyze the effects of catalyst loading, gas density and superficial velocity, and column diameter and vessel aspect ratio on the hydrodynamics of slurry bubble column reactors, namely, the per-compartment phase holdups and interstitial velocities, pressure gradient, bubble coalescence and break-up rates, and loci of velocity inversion for the gas and slurry profiles.  相似文献   

11.
In this article, a new Eulerian model for breakup frequency of drops induced by inertial stress in homogeneous isotropic turbulence is developed for moderately viscous fluids, accounting for the finite response time of drops to deform. The dynamics of drop shape in a turbulent flow is described by a linear damped oscillator forced by the instantaneous turbulent fluctuations at the drop scale. The criterion for breakup is based on a maximum value of drop deformation, in contrast with the usual critical Weber criterion. The breakup frequency is then modeled as a function of the power spectrum of Weber number (or velocity square), based on the theory of oscillators forced by a random signal, which can be related to classical statistical quantities, such as dissipation rate and velocity variance. Moreover, the effect of viscosities of both phases is included in the breakup frequency model without resorting to any additional parameter. © 2018 American Institute of Chemical Engineers AIChE J, 65: 347–359, 2019  相似文献   

12.
周灏  朱春英  付涛涛  高习群  马友光 《化工学报》2019,70(10):3924-3931
利用高速摄像仪研究了三维孔喉结构微通道内液滴的破裂行为。采用不同黏度的甘油-水溶液作为分散相,含4%(质量)表面活性剂(Span 20)的矿物油作为连续相。液滴通过孔喉结构后,观察到了三种流型:球形破裂、非球形破裂和不破裂。除极低连续相毛细数的情形外,分散相黏度和两相流量的增加不利于液滴破裂,液滴的破裂位置均接近于喉道出口。研究了液滴的球形破裂,结果表明,球形破裂中子液滴平均尺寸随分散相黏度和连续相流量的增加而降低,且与两相总毛细数呈幂律关系,模型预测值与实验结果吻合良好。  相似文献   

13.
The breakup of air bubbles in a turbulent water flow is studied experimentally. Water flows from a nozzle array, generating intense turbulence, and then flows downward through a cell. The velocity field is measured by PIV, and the local dissipation rate is estimated using a large‐eddy PIV technique. Bubbles (1.8 to 5 mm) are injected in the bottom of the cell and rise toward the region of intense turbulence, where they break. The time spent by bubbles in various zones without breaking and the number of breakups are evaluated, providing information about the breakup frequency. The number of daughter bubbles and their size distribution are determined. The number of daughters depends on a Weber number , where ? is the turbulent energy dissipation rate, D′ is the mother particle size, ρ and σ are the liquid density and surface tension. The daughter size distribution is a function of their number. © 2017 American Institute of Chemical Engineers AIChE J, 64: 740–757, 2018  相似文献   

14.
电解水作为大规模生产氢气的途径,增强电解水效率对于氢能源的生产具有十分重要的意义。而如何提高电解水工艺的电解效率是一个被广泛关注的问题。在电解过程中,电极两端产生的气体有三种去向:逸出电解槽、溶解于电解质中、附着在电极上。但在电解过程中,附着在电极上的气泡会严重影响电极与电解质之间的接触面积,直接降低了电解效率。降低气泡在电极上的停留时间能够有效增加电解质与电极的接触时间,提高产氢效率。本工作主要综述了近年来促进电解过程中极板上氢氧气泡从电极分离行为的研究,分别从极板属性、电流、溶液浓度和外加物理场这几个方面对气泡成核、生长、聚结和分离行为进行了具体的归纳总结,讨论了各种强化气泡分离方法的特点,并展望了未来的发展方向和路线,为未来的电解气泡脱离技术的研究提供参考。  相似文献   

15.
The paper deals with hydrodynamics in bubble columns. The objective of the paper is to study stability and mixing in a bubble column. The modeling of parameters such as stationary drag and added mass is addressed. In addition, the effect of bubble deformation in terms of eccentricity is highlighted. In a previous paper, the transition between homogeneous and heterogeneous regimes in bubble column without liquid flow has been shown to be driven by the deformation of the bubbles associated to drag and added mass. In the present paper, this work is generalized to bubble column with liquid flow and to the transition from bubble flow to slug flow in a vertical pipe. Numerical simulations of gas-liquid reactors are presented. The numerical simulations are validated in the case of gas plume after the Becker et al. data (Becker, S., Sokolichin, A., & Eigenberg, G. (1994) Gas-liquid flow in bubble columns and loop reactors: Part II. Comparison of detailed experiments and flow simulations. Chemical Engineering Science, 49 (24B), 5747-5762. The numerical simulations are finally applied to a bubble column. The simulations of residence time distribution coupled to transient hydrodynamics are shown to be very sensitive to the modeling of interfacial transfer of momentum from the bubbles to the liquid in terms of drag and added mass, including the effect of bubble deformation.  相似文献   

16.
A modified mathematical model is used to study the effects of various forces on the stability of cavitation bubbles within a diesel droplet. The principal finding of the work is that viscous forces of fluids stabilize the cavitation bubble, while inertial force destabilizes the cavitation bubble. The droplet viscosity plays a dominant role on the stability of cavitation bubbles compared with that of air and bubble. Bubble–droplet radius ratio is a key factor to control the bubble stability, especially in the high radius ratio range. Internal hydrodynamic and surface tension forces are found to stabilize the cavitation bubble, while bubble stability has little relationship with the external hydrodynamic force. Inertia makes bubble breakup easily, however, the breakup time is only slightly changed when bubble growth speed reaches a certain value (50 m·s?1). In contrast, viscous force makes bubble hard to break. With the increasing initial bubble–droplet radius ratio, the bubble growth rate increases, the bubble breakup radius decreases, and the bubble breakup time becomes shorter.  相似文献   

17.
The direct experimental data for breakup parameters of drop breakup time, multiple breakage, and breakup rate are urgently required to understand drop breakup phenomena. In this regard, drop breakup experiments were carried out in a stirred tank using a high-speed online camera. The influences of the rotating speed, interfacial tension, and drop viscosity on the above breakup parameters were then quantitatively investigated. An mechanism correlation for the breakup time is proposed and is further verified by comparing with the results of Solsvik and Jakobsen (Chem Eng Sci, 2015;131:219-234). The percentage of multiple breakage comparing to binary breakup was statistically counted. The results indicated that the dimensionless drop diameter η = d/dmax can be adopted to characterize the proportion of binary breakup. Finally, the breakup rate was experimentally measured and the breakup probability was calculated using the inverse method.  相似文献   

18.
A modified mathematical model is used to study the effects of various forces on the stability of cavitation bubbles within a diesel droplet. The principal finding of the work is that viscous forces of ...  相似文献   

19.
The aim of this work is to investigate experimentally the bubble breakup in a microfluidic T-junction divergence using a high-speed digital camera and a micro-Particle Image Velocimetry (micro-PIV) system. The breakup and non-breakup of N2 bubbles in glycerol–water mixtures with several concentrations of sodium dodecyl sulphate (SDS) as surfactant were studied with capillary number ranging from 0.001 to 0.1. The cross section of PMMA square microchannel is 400 μm wide and 400 μm deep. Four various flow patterns were observed at the T-junction by changing gas and liquid flow rates. The dynamics of three various types of symmetric breakup of bubbles were investigated. The symmetric breakup of bubbles type I is mainly controlled by the augmented pressure in liquid phase. The symmetric breakup of bubbles type II is controlled by both the increased pressure and viscous forces. In the symmetric breakup of bubbles type III, a scaling law for the minimum bubble neck and the remaining time during bubble breaking process were found. The transitions between breakup and non-breakup of bubbles were investigated, and a power–law relationship between bubble extension and capillary number was proposed to predict the transitions between adjacent regimes. Our experimental results reveal that the bubble breakup in a microfluidic T-junction divergence is similar to the droplet behaviours in such a device ( [Jullien et al., 2009] , [Leshansky and Pismen, 2009] and [Link et al., 2004] ).  相似文献   

20.
文丘里式气泡发生器内气泡破碎机制分析   总被引:2,自引:0,他引:2       下载免费PDF全文
作为一种高效、安全的气泡发生装置,文丘里式气泡发生器在工业、化工等过程有广泛的应用,但对其内部气泡破碎过程和作用机制相关研究较少。前期研究发现,较大气泡进入文丘里管扩张段后会发生迅速减速,并对气泡碎化过程产生极大影响。基于大涡模拟方法,对文丘里式气泡发生器内的流动过程进行了数值模拟,发现在扩张段近壁面存在明显的涡流区,涡流区前端与上游来流发生强烈的碰撞,造成进入此区域的流体发生迅速减速,使得涡流区与主流交汇区附近静压急速增大;当此区域存在运动的气泡时,激增的压力梯度力以及附加质量力导致气泡运动速度迅速减小,并与周边流体形成了更强的相互作用;高流速条件下,会使气泡发生严重变形、甚至破碎。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号