首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以细雾化铝粉和TiB2颗粒为原料,通过粉末冶金和热轧制制备微米TiB2和纳米Al2O3颗粒增强铝基复合材料。室温时,由于TiB2和Al2O3的综合强化作用,Al2O3/TiB2/Al复合材料的屈服强度和抗拉强度分别为258.7 MPa和279.3 MPa,测试温度升至350℃时,TiB2颗粒的增强效果显著减弱,原位纳米Al2O3颗粒与位错的交互作用使得复合材料的屈服强度和抗拉强度达到98.2MPa和122.5 MPa。经350℃退火1000 h后,由于纳米Al2O3对晶界的钉扎作用抑制晶粒长大,强度和硬度未发生显著的降低。  相似文献   

2.
In this study, Al/Al2O3/WC composites were fabricated via the accumulative roll bonding (ARB) process. Furthermore, the microstructure evolution, mechanical properties, and deformation texture of the composite samples were reported. The results illustrated that when the number of cycles was increased, the distribution of particles in the aluminum matrix improved, and the particles became finer. The microstructure of the fabricated composites after eight cycles of the ARB process showed an excellent distribution of reinforcement particles in the aluminum matrix. Elongated ultrafine grains were formed in the ARB-processed specimens of the Al/Al2O3/WC composite. It was observed that as the strain increased with the number of cycles, the tensile strength, microhardness, and elongation of produced composites increased as well. The results indicated that after ARB process, the overall texture intensity increases and a different-strong texture develops. The main textural component is the Rotated Cube component.  相似文献   

3.
Amorphous Al_2 O_3-reinforced Al composite(am-Al_2 O_3/Al) compacted from ultrafine Al powders for high-temperature usages confronts with drawbacks because crystallization of am-Al_2 O_3 at high temperatures will result in serious strength loss.Aiming at this unsolved problem,in this study,high-temperature Al materials with enhanced thermal stability were developed through introducing more thermally stable nano-sized particles via high-temperature pre-treatment of ultrafine A1 powders.It was found that the pre-treatment at ≤550℃ could introduce a few Al_2 O_3 in the Al matrix and increase the strength of the composites,but the strength was still below that of am-Al_2 O_3/Al because without being pinned firmly,grain boundaries(GBs) were softened at high temperature and intergranular fracture happened.When the pre-treatment was carried out at 600℃,nitridation and oxidation processes happened simultaneously,producing large numbers of intergranular(AlN+γ-Al_2 O_3) particles.GB sliding and intergranular fracture were suppressed;therefore,higher strength than that of am-Al_2 O_3/Al was realized.Furthermore,the(AIN+γ-Al_2 O_3)/Al exhibited more superior thermal stability compared to amAl_2 O_3/Al for annealing treatment at 580℃ for 8 h.Therefore,an effective way to fabricate high-temperature Al composite with enhanced thermal stability was developed in this study.  相似文献   

4.
Ultrafine-grained (UFG) AA1060 sheets were fabricated via five-cycle accumulative roll bonding (ARB) and subsequent three-pass cold rolling (298 K), or cryorolling (83 K and 173 K). Microstructures of the aluminum samples were examined via transmission electron microscopy, and their mechanical properties were measured via tensile and microhardness testing. Results indicate that ultrafine grains in ARB-processed sheets were further refined by subsequent rolling, and the grain size became finer with reducing rolling temperature. The mean grain size of 666 nm in the sheets subjected to ARB was refined to 346 or 266 nm, respectively, via subsequent cold rolling or cryorolling (83 K). Subsequent cryorolling resulted in ultrafine-grained sheets of higher strength and ductility than those of the sheets subjected to cold rolling.  相似文献   

5.
Mechanical properties and formation of nano-sized grains in Cu and Cu−Fe−P alloys by the accumulative roll bonding (ARB) process were investigated. Nano-sized grains were successfully obtained in OFC and PMC-90 alloys by the ARB process after the third cycle. Once the 200 nm grains formed, further reduction in the grain size was not observed up to 8 ARB process cycles. For both alloys, the tensile strength values increased drastically in the initial stage of the ARB process. The tensile strength values of both alloys tended to saturate after the third ARB process cycle. The tensile elongation value greatly decreased by 1 cycle of the ARB process due to the strain hardening. After the third cycle of the ARB process, each alloy showed a gradual increase in tensile elongation due to the dynamic recovery. For PMC-90 alloy, the strength value was higher than that of OFC due to addition of the alloying elements. With increased annealing temperature, the nanosized grains tended to grow in OFC at 150°C, and after annealing at 200°C, coarse grains formed. On the other hand, in PMC-90 alloy, there was no grain growth up to 250°C due to the alloying elements (Fe, P).  相似文献   

6.
Multilayered Al/Ni composites were produced by accumulative roll bonding (ARB) process using Al 1060 and commercial Ni foils. In this process it was observed that nickel layers necked and fractured as accumulative roll bonding passes increased. After six ARB passes, a multilayered Al/Ni composite with homogeneously distributed fragmented nickel layers in aluminum matrix was produced. Structure and mechanical properties of these multilayer composites were evaluated at different passes of ARB process. During ARB, it was observed that as the strain increased with the number of passes, the strength, microhardness and elongation of produced composites increased as well. In addition, enhancement of the strength was shown to be higher than the tensile strength of Al/Al and Al/Cu multilayered composites produced by ARB process in the previous works by the same authors.  相似文献   

7.
利用箔-纤维-箔法和热压烧结成功制备出Mof/Ti48Al复合材料,并分析了Mo纤维对TiAl合金显微组织和力学性能的影响。结果表明,通过635 ℃,3 MPa,10 h+680 ℃,3 MPa,4 h的两步低温热压,箔材中的Al完全反应完,TiAl箔叠层材料形成致密的Ti/TiAl3板材,合金致密基本无孔洞。再通过1200 ℃,36 h的高温退火,Ti与TiAl3在高温下继续反应,形成γ-TiAl、α-Ti3Al相。高温退火后的钼纤维与基体合金发生了扩散反应,形成了扩散区域,此区域内主要相组成为TiMo、AlMo3,钼纤维与基体合金通过扩散紧密结合在一起,界面未发现孔洞和因应力形成的裂纹。相比于未添加钼纤维的合金,添加10vol%钼纤维的复合材料抗弯性能有明显的提高,钼纤维在合金中起到了强韧化作用。  相似文献   

8.
采用冷轧复合工艺制备了用于锂离子电池封装用的层状Al-Ni双金属复合带材。针对轧制复合工艺和热处理退火工艺对Al-Ni双金属复合带材界面化合物种类、结构及其应用特性进行了研究。结果表明:合适的轧制变形量是实现Al层和Ni层复合的关键因素,在本实验中复合轧制的变形量应控制在50%~60%之间。在后续退火工艺中,Al层和Ni层界面上首先形成的是Al3Ni相,该相有利于Al层和Ni层实现牢固的冶金结合。随着退火时间的延长,随后会形成较脆性的Al3Ni2相,该相以层状形式存在两层金属中间,容易造成Al层和Ni层金属的剥离,因此通过退火工艺控制界面化合物形成的类型和结构十分重要。实验发现,在698K~748K温度范围内退火1小时的轧制复合Al-Ni双金属复合带材,具有好的抗折弯效果,稳定的焊接性能和合适的电阻值,可以作为锂电池封装材料来进行使用。  相似文献   

9.
采用SAl5183焊丝对TA2钛和5A06铝合金进行了双面冷弧MIG组合焊接.对接头厚度方向不同位置的Ti/Al界面组织特性进行了分析;并对接头抗拉强度进行了测试.结果表明,试验工艺获得的接头中,钛与焊缝形成了平直的结合界面,界面处未发现剥离、裂纹等缺陷.受焊接热输入影响,形成两种不同的Ti/Al界面:接头中上部钛与焊...  相似文献   

10.
将TA1/5052爆炸焊接复合板在350、400及450 ℃分别保温1、3、6、9 h退火,对退火前后复合板组织和性能进行分析。结果表明:随退火温度升高,原子扩散加剧,界面形成的扩散层逐渐变厚;退火过程中铝易于向钛侧扩散,白色亮带和柯肯达尔孔洞主要位于靠近界面的5052铝合金侧;退火前界面处物相组成为α-Ti、α-Al、TiAl3,经350、400 ℃退火3 h及450 ℃退火1、3、6、9 h后,物相组成不变。经不同温度退火后,复合板界面抗拉强度低于退火前,而断面收缩率和伸长率明显高于退火前。拉伸断口分析表明,复合板TA1侧为以脆性断裂为主、韧性断裂为辅的韧脆混合断裂,5052侧为韧性断裂;复合板在350 ℃退火时界面剪切强度和剥离强度最大,较爆炸态分别增加8.24%和45.68%,随退火温度升高,界面剪切强度和剥离强度降低。退火前后界面结合区硬度均高于基复板两侧硬度,且随离界面距离增加,硬度逐渐降低直至降至钛铝两侧母材硬度。退火后界面结合区硬度明显低于爆炸态硬度。  相似文献   

11.
Porous TiAl_3 intermetallics were fabricated through vacuum reactive sintering from Ti–75 Al at.% elemental powder mixture. The phase compositions, expansion behaviors, pore characteristics and microstructure evolution of TiAl_3 intermetallics were investigated, and the pore formation mechanism was also proposed. It was found that the actual temperature of compacts showed an acute climb from 668 to 1244 °C in 166 s, while the furnace temperature maintained the linear growth of 5 °C/min, which indicated that an obvious thermal explosion(TE) reaction occurred during sintering,and only single-phase TiAl_3 intermetallic was synthesized in TE products. The open porosity increased from 22.2(green compact) to 32.8% after reactive diffusion sintering at 600 °C and rised to 58.7% after TE, then decreased to 51.2% after high-temperature homogenization at 1100 °C. Therefore, TE reaction is the dominated pore formation mechanism of porous TiAl_3 intermetallics. The pore evolution in porous TiAl_3 intermetallics occurred by the following mechanisms:certain intergranular pores remained among powder particles of green compact, then low-temperature sintering resulted in a further increase in porosity due to the Kirkendall effect. Moreover, TE reaction gave rise to a dramatic volume expansion because of the rapid increase in temperature, and high-temperature sintering caused densification and a slight shrinkage.  相似文献   

12.
评价用累积叠轧焊(ARB)制备纳米结构Cu/Al/Ag多层复合材料的可行性,分析该复合材料的拉伸性能和电导率.利用强化机制和从X射线衍射获取的结构参数建立理论模型预测复合材料的抗拉强度.结果表明,随着ARB的进行,实验和计算得到的抗拉强度均有所提高,在第5个ARB循环时达到最大值,分别为450 MPa和510 MPa....  相似文献   

13.
采用冷喷涂增材制造工艺制备了Al-25Al2O3、Al-50Al2O3和Al-75Al2O3(体积分数,%)具有不同体积含量Al2O3颗粒的铝基复合材料,并采用SEM、EBSD、硬度测试和拉伸测试等测试方法分析了真空退火处理对冷喷涂铝基复合材料的微观结构和力学性能的影响.结果表明,Al2O3颗粒的加入增加了冷喷涂增材材...  相似文献   

14.
In this study, Al/Al2O3 composite strips were produced by the cold roll bonding (CRB) process. Microhardness, tensile strength, and elongation of composite strips were investigated as a result of changes in thickness reduction, quantity of alumina particles, and the production method used. It was found that higher values of reduction and quantities of alumina improved microhardness and tensile strength but decreased elongation. Furthermore, as-received strips exhibited the highest values for microhardness and tensile strength but the lowest for elongation. In contrast, post-rolling annealed strips recorded the lowest values for microhardness and tensile strength but the highest for elongation. Finally, it was found that pre-rolling annealing was the best method for producing this composite via the CRB process.  相似文献   

15.
Accumulative roll bonding (ARB) is one of the most promising methods for the industrial production of ultrafine grained (UFG) sheet materials. The poor bond strength is one of the major drawbacks in the ARB process. Degreasing and wire-brushing have been widely adopted in ARB to improve bonding. In this paper, the nano-sized SiO2 particles has been used to enhance the bond strength. The bond strength in our samples exceeds 2.5 times the values achieved by degreasing and wire-brushing methods. In addition, the mechanical properties and microstructures of the ARB-processed samples have also been investigated.  相似文献   

16.
通过室温冷轧制备出了1060Al/AlSn20Cu/1060Al/钢多层复合板材,并探索了轧制压下量对复合板微观组织和力学性能的影响。利用扫描电子显微镜和电子背散射衍射(EBSD)对复合板微观组织进行表征,通过拉伸试验测量了复合板力学性能。复合板的初始轧制压下量为17%,最小稳定压下量为40%。结果表明,随着轧制压下量的增加,铝合金层中锡相和钢中组织沿轧制方向被拉长,但是纯铝层呈现出等轴晶。随着轧制压下量的增大,复合板抗拉伸强度和界面结合强度增加,而延伸率下降。AlSn20Cu合金层的断裂主要跟其中的锡相有关。  相似文献   

17.
Refining mechanism of salts containing Ti and B elements in purity aluminum   总被引:1,自引:0,他引:1  
The effect of refiners containing Ti, B elements on the microstructure of purity aluminum has been studied in detail with optical microscopy, scanning electron microscopy (SEM) and energy dispersive analysis of X-ray (EDAX). It is shown that salts mixture containing 5Ti1B is the best refiner with the finest -Al grain and more than 10 h fading time. It is ascertained from the analysis of SEM–EDAX and thermodynamics analysis that the refining mechanism of salts mixture is mainly contributed to the heterogeneous nuclei of more fine TiAl3 particles dispersed in the melting, which come from the reaction between the salts and aluminum. While (Al,Ti)B2 has little or no refining effect, but it will reduce the size of TiAl3 since the TiAl3 nucleates and grows along the (Al,Ti)B2 particle. That is to say, B atom has also refining effect on the purity aluminum when it is added simultaneously with Ti atom.  相似文献   

18.
A major challenge in achieving the best potential of SiCp-reinforced aluminum composites is to homogeneously disperse SiC particles within the aluminum alloys. The presence of coarse Si fibers with non-uniform distribution in cast Al-Si alloys, which may lead to poor mechanical properties, is another important problem that limits the application of these alloys. In order to eliminate these problems, accumulative roll bonding (ARB) process was used in this study as a very effective method for improving the microstructure and mechanical properties of the Al356/SiCp composite. It was found that when the number of ARB cycles was increased, the uniformity of the Si and SiCp in the aluminum matrix improved, the Si particles became finer and more spheroidal, the free zones of Si and SiC particles disappeared, the porosity of composite decreased, the bonding quality between SiCp and matrix improved, and therefore mechanical properties of the composites were improved. The microstructure of the manufactured Al356/SiCp composite after six ARB cycles indicated a completely modified structure so that its tensile strength and elongation values reached 318 MPa and 5.9%, which were 3.1 and 3.7 times greater than those of the as-cast composite, respectively.  相似文献   

19.
In this study, the deformable titanium (Ti) particles reinforced AZ91 composite was successfully prepared by powder metallurgy and subsequent extrusion. The mechanical properties and microstructural evolution of pure AZ91 and 5Ti/AZ91 composite were studied. The yield strength, ultimate tensile strength, and elongation of 5Ti/AZ91 composite are measured to be 212 MPa, 323 MPa, and 10.1%, respectively. Microstructure analysis revealed that Ti particles are elongated along the extrusion direction, forming a discontinuous strip Ti particles, fine precipitated Mg17Al12 phase inhibits dynamic recrystallization (DRX) behavior through Zener pinning effect and hinders the growth of matrix grains, resulting in refiner grains of 5Ti/AZ91 composite. Heterogeneous deformed Ti particles and magnesium (Mg) matrix to generate additional heterogeneous deformation-induced (HDI) strengthening. Heterogeneous deformation-induced strengthening mainly contributed to the increment of yield strength for 5Ti/AZ91 composite.  相似文献   

20.
A turtle carapace bio-inspired Ti matrix hybrid composite was successfully fabricated in this work.This composite incorporates two parts: the Ti–Al intermetallic multilayered composite and continuous Si C fibers-reinforced Ti matrix composite.In the Ti–Al intermetallic multilayered composite part,a series of Ti–Al intermetallics compounds,including Ti_3Al,Ti Al,Ti Al_2 and Ti Al_3,were formed between the Ti layers.In the continuous Si C fibers-reinforced Ti matrix composite part,Si C fibers and Ti matrix were found to be bonded well through weak interface reaction.Flexural strength of this material reached 1.21 ± 0.16 GPa,measured by three-point bending test.The deformation features suggest that the hierarchical structure combining ductile Ti layers/matrix with brittle high-strength Ti–Al intermetallics layers/Si C fibers can effectively enhance the mechanical properties of the bio-inspired hybrid composite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号