首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Randomly amplified polymorphic DNA (RAPD) is a tremendously convenient approach used to discriminate between Brassica species owing to its accuracy and speed. RAPD primers generate adequate genetic information that can be used in the primer-marker system. In this work, twenty RAPD-PCR based markers were executed to generate polymorphic data, like polymorphic information content (PIC), mean resolving power (MRP), resolving power (RP), effective multiplex ratio (EMR), and marker index (MI) for the first time and genetic distance among and between six Brassica species were calculated. Our results indicated that 20 primers produced a total of 231 scored band and generated 87% polymorphic bands. Average PIC, MRP, RP, MI, and EMR values were 0.088, 0.65, 6.7, 0.78, and 8.9, respectively. PIC showed an overall negative correlation with MRP, RP, MI, and EMR, whereas MRP, RP, and EMR, were positively correlated with each other. Genetic identities ranged from 41.99% (between Brassica napus and Brassica oleracea) to 68.83% (between Brassica campestris and Brassica oleracea). Dendrogram results showed no clustering between species except between Brassica campestris and Brassica nigra. Nevertheless, these results will be helpful to acquire useful information about the markers and their use to determine the genomic structures of Brassica species. Further, based on genetic distance and polymorphic information, new hybrids can be developed for effective oilseed production.  相似文献   

2.
Every breeding program that aims to create new and improved cultivars with desired traits mostly relies on information related to genetic diversity. Therefore, molecular characterization of germplasms is important to obtain target cultivars with desirable traits. Sweet potato [Ipomoea batatas (L.) Lam] is widely considered the world’s most important crop, with great diversity in morphological and phenotypic traits. The genetic diversity of 20 sweet potato germplasms originating from Bangladesh, CIP, Philippines, Taiwan, and Malaysia were compared, which was accomplished by genetic diversity analysis by exploring 20 microsatellite DNA markers for germplasm characterization and utilization. This information was effective in differentiating or clustering the sweet potato genotypes. A total of 64 alleles were generated using the 20 primers throughout the 20 germplasm samples, with locus IBS97 having the highest number of alleles (5), whereas locus IbU33 had the fewest alleles (2). The alleles varied in size from 105 (IbU31) to 213 base pairs (IBS34). The Polymorphism Information Content (PIC) values for the loci IbL46 and IBS97 varied from 0.445 to 0.730. IBS97 has the highest number of effective alleles (3.704), compared to an average of 2.520. The average Shannon’s diversity index (H) was 1.003, ranging from 0.673 in IbU3 to 1.432 in IBS97. The value of gene flow (Nm) varied between 0.000 and 0.005, with an average of 0.003, whereas genetic differentiation (FST-values) ranged between 0.901 and 1.000. The sweet potato germplasm included in this study had a broad genetic base. SP1 vs. SP9 and SP12 vs. SP18 germplasm pairings had the greatest genetic distance (GD = 0.965), while SP1 vs. SP2 germplasm couples had the least genetic diversity (GD = 0.093). Twenty genotypes were classified into two groups in the UPGMA dendrogram, with 16 genotypes classified as group “A” and the remaining four genotypes, SP10, SP18, SP19, and SP20, classified as group “B.” According to cluster analysis, the anticipated heterozygosity (gene diversity) of Nei (1973) was 0.591 on average. In summary, SSR markers successfully evaluated the genetic relationships among the sweet potato accessions used and generated a high level of polymorphism. The results of the present study will be useful for the management of germplasm, improvement of the current breeding strategies, and the release of new cultivars as varieties.  相似文献   

3.
The Escherichia coli (E. coli) is prevailing worldwide, but the epidemiology of E. coli infections feature regional distribution characteristics to some extent. E. coli, as a zoonotic pathogen, can be transferred from animals to humans through food chain or via contact with wounds, causing a public health risk. We reported the swelling of proventriculus and tracheal bleeding following the death in two broiler chickens (Gallus gallus domesticus) from Beijing, China. To investigate whether a virus was involved in the infection, Madin Darby Bovine Kidney (MDCK) cells were co-cultured with supernatants of proventriculus, trachea and spleen homogenates. The avian leucosis virus was detected in the samples of proventriculus and trachea, but the avian influenza virus, the Newcastle disease virus and the avian infectious laryngotracheitis virus were not detected. E. coli isolates were resistant to almost all the antimicrobial as tested except for the combinations of amoxicillin/clavulanic acid and sulfamethoxazole/trimethoprim. PCR tests demonstrated the presence of antibiotic resistance genes in these E. coli isolates and further research revealed a novel gene profile with the presence of CTX-M-1, gyrA, gyrB, oqxA, oqxB, parC and Sul2 antibiotic resistance genes in a strain isolated from a proventriculus sample. These results demonstrated that the presence of antibiotic resistant E. coli would not necessarily cause outbreak of large-scale disease. However, when the bacteria carrying new antibiotic resistance genes enter the environment, it may result in the development of more virulent strains which will potentially impact human and animal health.  相似文献   

4.
Broussonetia kazinoki × Broussonetia papyrifera (ZJGS) is a hybrid species in Moraceae family, which has a very complicated hybrid origin. The excellent characteristics of fast growth, strong soil and water conservation ability, high leaf protein content and stem fiber content in ZJGS make it both ecological benefits in the mining area and economically valuable. This study aims to further understand ZJGS and other Moraceae taxa through the ZJGS chloroplast (cp) genome structure and the comparison with 12 closely related Moraceae species. Among the 13 Moraceae species, the cp genome length of seven Broussonetia species (ranges from 160,239 bp to 162,594 bp) is larger than that of six Morus species (ranges from 158,459 bp to 159,265 bp). Among the 77 shared protein-coding genes (PCGs) in Moraceae species, the obvious positive selection of Ka/Ks ratios acted on petD and rpl16 genes of B. kazinoki and B. papyrifera, respectively. Phylogenetic analysis based on shared PCGs from 28 species shows that ZJGS is closely related to maternal B. kazinoki. These findings provide data support for the origin of ZJGS hybridization and provide genomic resources for future ZJGS resource development and molecular breeding.  相似文献   

5.
HMA2 (heavy metal ATPase 2) plays a crucial role in extracellular and intracellular Zn2+ transport across biomembranes, maintaining ion homeostasis, and playing an important role in the normal physiological metabolism, growth, and development of plants. In our study, a novel HMA2 gene, named MaHMA2, was isolated and cloned from white mulberry (Morus alba L.). The gene sequence obtained was 1,342 bp long, with an open reading frame of 1,194 bp, encoding a protein of 397 amino acids, with a predicted molecular mass of 42.852 kD and an isoelectric point of 7.53. This protein belonged to the PIB-type ATPase transport protein family. We analyzed the expression of the MaHMA2 gene by quantitative real-time PCR. The results showed that the level of MaHMA2 gene expression decreased to a Zn concentration of 800 mg/kg. Malondialdehyde and proline levels increased and responded to increasing Zn when the MaHMA2 gene was silenced, whereas the activities of peroxidase and superoxide dismutase tended to increase in response to increasing Zn2+ ion stress concentrations but were lower in the gene-silenced plants. These findings suggested that the MaHMA2 gene played an active role in the tolerance response of mulberry to Zn stress.  相似文献   

6.
7.
Background: Cardiomyocytes derived from human embryonic stem cells (hESCs) are regulated by complex and stringent gene networks during differentiation. Long non-coding RNAs (lncRNAs) exert critical epigenetic regulatory functions in multiple differentiation processes. However, the involvement of lncRNAs in the differentiation of hESCs into cardiomyocytes has not yet been fully elucidated. Here, we identified the key roles of ZFAS1 (lncRNA zinc finger antisense 1) in the differentiation of cardiomyocytes from hESCs. Methods: A model of cardiomyocyte differentiation from stem cells was established using the monolayer differentiation method, and the number of beating hESCs-derived cardiomyocytes was calculated. Gene expression was analyzed by quantitative real-time PCR (qRT-PCR). Immunofluorescence assays were performed to assess the expression of cardiac troponin T (cTnT) and α-actinin protein in cardiomyocytes. Results: qRT-PCR showed that ZFAS1 expression in the mesoderm was significantly higher than that in embryonic stem cells, cardiac progenitor cells, and cardiomyocytes. Knockdown of ZFAS1 inhibited cardiomyocyte differentiation from hESCs, which was characterized by reduced expression of the cardiac-specific markers cTnT, α-actinin, myosin heavy chain 6 (MYH6), and myosin heavy chain 7 (MYH7). In contrast, ZFAS1 overexpression remarkably increased the percentage of spontaneously beating cardiomyocytes. In terms of the mechanism, we found that ZFAS1 is an antisense lncRNA at the 5′ end of the protein-coding gene ZNFX1. Knockdown of ZFAS1 could increase the mRNA expression level of ZNFX1. Furthermore, qRT-PCR demonstrated that the silencing of ZNFX1 led to an increase in cardiac-specific markers that predicted the promotion of cardiomyocyte differentiation. Conclusion: Altogether, these data suggest that lncRNA-ZFAS1 is required for cardiac differentiation by functionally inhibiting the expression of ZNFX1, which may provide a reference for the treatment of heart disease to a certain extent.  相似文献   

8.
9.
Somatic embryogenesis is an asexual reproduction process that occurs in many plant species, including rice. This process contains several totipotency markers such as Somatic Embryogenesis Receptor-like Kinase (SERK), Leafy Cotyledon1 (LEC1) and WUSCHEL-Related Homeobox4 (WOX4) and also a helpful model for embryo development and clones and transformations. Here, we report the gene expression during somatic embryo development correlates with regeneration frequency in 14 Javanica rice (pigmented and non-pigmented) using modifified N6 media supplemented with Kinetin (2.0 mg/L) and NAA (1.0 mg/L). Although there have been advances in understanding the genetic basis of somatic embryogenesis in other varieties, rice is still unexplored, especially during somatic embryo development. Moreover, for the formation of callus induction from immature embryos, 2,4-D (2.0 mg/L, 3.0 mg/L) was used. This study analysed the gene expression of OsSERK, OsWOX4 and OsLEC1 genes through RT-PCR analysis. Higher expression of the OsLEC1 gene indicates that their function may correlate in the in vitro with the high response of rice after transfer to regeneration media. This study found that rice varieties of pigmented rice (MS Pendek and Gogoniti II) and non-pigmented rice (Pandan Ungu) showed high regeneration frequency, showing higher OsLEC1 expression than other varieties because OsLEC1 promotes the maturation of somatic embryos in plant regeneration on day 14. However, the contrast with Genjah nganjuk may be effective because of other regulatory genes. RT-PCR analysis showed OsSERK had less expression level than OsLEC1 and OsWOX4 in the varieties, which correlate with the percentage of plant regeneration, but not for Gogoniti II. In conclusion, the higher percentage of plant regeneration correlates with the higher expression level of OsLEC1 at day 14 of media regeneration of rice.  相似文献   

10.
Plant U-box (PUB) E3 ubiquitin ligases play important roles in hormone signaling pathways and in response to different abiotic stresses, but little is known about U-box genes in Danshen (root of Salvia miltiorrhiza Bunge). Here, we identified and characterized 70 SmPUB genes based on its genome sequence. Phylogenetic analysis of U-box genes from S. miltiorrhiza and Arabidopsis suggested that they can be clustered into seven subgroups (I–VII). Typical U-box domains were found in all identified SmPUB genes through the analysis of conserved motifs. Moreover, qRT-PCR was applied to analyze the relative expression levels of U-box genes in S. miltiorrhiza roots and leaves under PEG-induced water deficit and salt stresses. Results revealed that the SmPUB genes exhibited stronger response to drought than to salt stress. To the best of our knowledge, this report is the first to perform genome-wide identification and analysis of the U-box gene family in S. miltiorrhiza, and the results provide valuable information for better understanding of the function of U-box in S. miltiorrhiza.  相似文献   

11.
A new cation exchangers (CAXs) gene was cloned and characterized from Capsella bursapastoris by rapid amplification of cDNA ends (RACE). The full-length cDNA sequence of cax from C. bursa-pastoris (designated as Cbcax51) was 1754 bp containing a 1398 bp open reading frame encoding a polypeptide of 466 amino-acid residues with a calculated molecular mass of 50.5 kDa and an isoelectric point of 5.69. The predicted CbCAX51 contained an IMP dehydrogenase/GMP reductase domain, two Na+/Ca2+ exchanger protein domains. Comparative and bioinformatics analyses revealed that CbCAX51 showed extensive homology with CAX from other plant species. The expression analysis by different treatments indicated that Cbcax51 could be activated by cold triggering and was related to the cold acclimation process, but its expression is regulated negatively by drought and not affected by ABA or salt.  相似文献   

12.
Azalea is a general designation of Rhododendron in the Ericaceae family. Rhododendron not only has high ornamental value but also has application value in ecological protection, medicine, and scientific research. In this study, we used Illumina and PacBio sequencing to assemble and annotate the entire chloroplast genomes (cp genomes) of four Rhododendron species. The chloroplast genomes of R. concinnum, R. henanense subsp. lingbaoense, R. micranthum, and R. simsii were assembled into 207,236, 208,015, 207,233, and 206,912 bp, respectively. All chloroplast genomes contain eight rRNA genes, with either 88 or 89 protein-coding genes. The four cp genomes were compared and analyzed by bioinformatics, and the phylogenetic analysis based on chloroplast genomes of 26 species of Ericaceae, Actinidiaceae, and Primulaceae under Ericales was conducted. A comparison of the linear structure of cp genomes of four Rhododendron showed that there were substantial sequence similarities in coding regions, but high differences in non-coding regions. A phylogenetic analysis, based on chloroplast whole genome sequences, showed that all Rhododendron species are in the clade Ericaceae. This study provides valuable genetic information for the study of population genetics and evolutionary relationships in Rhododendron and other azalea species.  相似文献   

13.
The aim of the current research was to clone and to characterize the partial 66 kDa streptavidin-binding peptide (SBP) found in the germinated embryos of Pisum sativum L. var. Alaska. The pea (P. sativum var. Alaska) embryos possess prominent 66 kDa SBPs that gradually disappeared after few hours of germination in germinated embryos, but not in the cotyledons. The total RNA was isolated from embryos of P. sativum but could not be isolated from the cotyledons. The partial nucleotides sequences of 66 kDa SBPs of embryonic stalk (P. sativum var. Alaska) were cloned and identified using pMOSBlue vector. 66 kDa (SBP) gene from the embryos of P. sativum var. Alaska possesses 327 bp having an open reading frame (ORF) region in a part of the gene that encoded for 108 amino acids. Alignment showed similarity among 66 kDa SBPs P. sativum var. Alaska, with P. sativum seed biotinylated protein (SBP65) and P. sativum sbp65a mRNA with DNA distance matrix between 0.0094 to 1.2676. MALDI-TOF mass spectrometry analysis of 66 kDa (SBP) proteins showed it had similar short peptides to 19 proteins found in different organisms, especially Convicilin precursor, and the seed biotinylated protein in P. sativum. The alignment results of both nucleotide sequences and amino acid residues either from cloning or MALDI-TOF-MS showed differences with related species, especially P. sativum. No mRNA was found in the cotyledons during seeds germination, which means no metabolic activities and this part may act only as food reservoirs for growing newly embryos.  相似文献   

14.
15.
16.
The widespread Mexican apple snail Pomacea flagellata (Say 1827) and the strictly endemic "tegogolo" P. patula catemacensis (Baker 1922) (restricted to Lake Catemaco), are the only known American Ampullariidae that have haploid complements n=13. Pomacea patula catemacensis has suffered a critical reduction in abundance due to immoderate fishing for human consumption. Chromosome slides were obtained from colchicine-injected Pomacea snails collected from nine locations along the coastal zone of the Gulf of Mexico, including Lake Catemaco, for use in principal component analysis (PCA). Total proteins in foot homogenates were analyzed through isoelectric focusing (IEF) and native-PAGE electrophoresis on polyacrylamide gels. The chromosome number 2n=26 was confirmed for snails from all locations, with a uniform 9 m + 4 sm formula. However, P. patula catemacensis showed significantly larger chromosomes (absolute size) than any population of P. flagellata. Pomacea patula catemacensis also differed from all populations of P. flagellata in a PCA with standardized data, i.e., independently of the absolute size difference between species. Proteins with an acid isoelectric point were dominant in the foot of both species. The electrophoresis analysis showed that P. flagellata has 17 protein bands, with an upper bound at IEF=7.6, while P. patula catemacensis has only 15 bands, with an upper bound at IEF=7 and a more evenly spaced band pattern. Molecular weights ranged from 40 to approximately 130 kDa in both species. Proteins with high values (>94 kDa) were the most abundant. Pomacea patula catemacensis showed a band of 93 kDa, which was absent from all specimens of P. flagellata. Samples of P. flagellata did not cluster according to any geographical pattern in the statistical analyses, nor did they show any taxonomically useful differences in their electrophoretic patterns that merit sub-specific discrimination.  相似文献   

17.
The term “undruggable” is to describe molecules that are not targetable or at least hard to target pharmacologically. Unfortunately, some targets with potent oncogenic activity fall into this category, and currently little is known about how to solve this problem, which largely hampered drug research on human cancers. Ras, as one of the most common oncogenes, was previously considered “undruggable”, but in recent years, a few small molecules like Sotorasib (AMG-510) have emerged and proved their targeted anti-cancer effects. Further, myc, as one of the most studied oncogenes, and tp53, being the most common tumor suppressor genes, are both considered “undruggable”. Many attempts have been made to target these “undruggable” targets, but little progress has been made yet. This article summarizes the current progress of direct and indirect targeting approaches for ras, myc, two oncogenes, and tp53, a tumor suppressor gene. These are potential therapeutic targets but are considered “undruggable”. We conclude with some emerging research approaches like proteolysis targeting chimeras (PROTACs), cancer vaccines, and artificial intelligence (AI)-based drug discovery, which might provide new cues for cancer intervention. Therefore, this review sets out to clarify the current status of targeted anti-cancer drug research, and the insights gained from this review may be of assistance to learn from experience and find new ideas in developing new chemicals that directly target such “undruggable” molecules.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号