首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The COVID-19 pandemic poses an additional serious public health threat due to little or no pre-existing human immunity, and developing a system to identify COVID-19 in its early stages will save millions of lives. This study applied support vector machine (SVM), k-nearest neighbor (K-NN) and deep learning convolutional neural network (CNN) algorithms to classify and detect COVID-19 using chest X-ray radiographs. To test the proposed system, chest X-ray radiographs and CT images were collected from different standard databases, which contained 95 normal images, 140 COVID-19 images and 10 SARS images. Two scenarios were considered to develop a system for predicting COVID-19. In the first scenario, the Gaussian filter was applied to remove noise from the chest X-ray radiograph images, and then the adaptive region growing technique was used to segment the region of interest from the chest X-ray radiographs. After segmentation, a hybrid feature extraction composed of 2D-DWT and gray level co-occurrence matrix was utilized to extract the features significant for detecting COVID-19. These features were processed using SVM and K-NN. In the second scenario, a CNN transfer model (ResNet 50) was used to detect COVID-19. The system was examined and evaluated through multiclass statistical analysis, and the empirical results of the analysis found significant values of 97.14%, 99.34%, 99.26%, 99.26% and 99.40% for accuracy, specificity, sensitivity, recall and AUC, respectively. Thus, the CNN model showed significant success; it achieved optimal accuracy, effectiveness and robustness for detecting COVID-19.  相似文献   

2.
Coronavirus (COVID-19) infection was initially acknowledged as a global pandemic in Wuhan in China. World Health Organization (WHO) stated that the COVID-19 is an epidemic that causes a 3.4% death rate. Chest X-Ray (CXR) and Computerized Tomography (CT) screening of infected persons are essential in diagnosis applications. There are numerous ways to identify positive COVID-19 cases. One of the fundamental ways is radiology imaging through CXR, or CT images. The comparison of CT and CXR scans revealed that CT scans are more effective in the diagnosis process due to their high quality. Hence, automated classification techniques are required to facilitate the diagnosis process. Deep Learning (DL) is an effective tool that can be utilized for detection and classification this type of medical images. The deep Convolutional Neural Networks (CNNs) can learn and extract essential features from different medical image datasets. In this paper, a CNN architecture for automated COVID-19 detection from CXR and CT images is offered. Three activation functions as well as three optimizers are tested and compared for this task. The proposed architecture is built from scratch and the COVID-19 image datasets are directly fed to train it. The performance is tested and investigated on the CT and CXR datasets. Three activation functions: Tanh, Sigmoid, and ReLU are compared using a constant learning rate and different batch sizes. Different optimizers are studied with different batch sizes and a constant learning rate. Finally, a comparison between different combinations of activation functions and optimizers is presented, and the optimal configuration is determined. Hence, the main objective is to improve the detection accuracy of COVID-19 from CXR and CT images using DL by employing CNNs to classify medical COVID-19 images in an early stage. The proposed model achieves a classification accuracy of 91.67% on CXR image dataset, and a classification accuracy of 100% on CT dataset with training times of 58 min and 46 min on CXR and CT datasets, respectively. The best results are obtained using the ReLU activation function combined with the SGDM optimizer at a learning rate of 10−5 and a minibatch size of 16.  相似文献   

3.
A hybrid convolutional neural network (CNN)-based model is proposed in the article for accurate detection of COVID-19, pneumonia, and normal patients using chest X-ray images. The input images are first pre-processed to tackle problems associated with the formation of the dataset from different sources, image quality issues, and imbalances in the dataset. The literature suggests that several abnormalities can be found with limited medical image datasets by using transfer learning. Hence, various pre-trained CNN models: VGG-19, InceptionV3, MobileNetV2, and DenseNet are adopted in the present work. Finally, with the help of these models, four hybrid models: VID (VGG-19, Inception, and DenseNet), VMI(VGG-19, MobileNet, and Inception), VMD (VGG-19, MobileNet, and DenseNet), and IMD(Inception, MobileNet, and DenseNet) are proposed. The model outcome is also tested using five-fold cross-validation. The best-performing hybrid model is the VMD model with an overall testing accuracy of 97.3%. Thus, a new hybrid model architecture is presented in the work that combines three individual base CNN models in a parallel configuration to counterbalance the shortcomings of individual models. The experimentation result reveals that the proposed hybrid model outperforms most of the previously suggested models. This model can also be used in the identification of diseases, especially in rural areas where limited laboratory facilities are available.  相似文献   

4.
The exponential increase in new coronavirus disease 2019 ({COVID-19}) cases and deaths has made COVID-19 the leading cause of death in many countries. Thus, in this study, we propose an efficient technique for the automatic detection of COVID-19 and pneumonia based on X-ray images. A stacked denoising convolutional autoencoder (SDCA) model was proposed to classify X-ray images into three classes: normal, pneumonia, and {COVID-19}. The SDCA model was used to obtain a good representation of the input data and extract the relevant features from noisy images. The proposed model’s architecture mainly composed of eight autoencoders, which were fed to two dense layers and SoftMax classifiers. The proposed model was evaluated with 6356 images from the datasets from different sources. The experiments and evaluation of the proposed model were applied to an 80/20 training/validation split and for five cross-validation data splitting, respectively. The metrics used for the SDCA model were the classification accuracy, precision, sensitivity, and specificity for both schemes. Our results demonstrated the superiority of the proposed model in classifying X-ray images with high accuracy of 96.8%. Therefore, this model can help physicians accelerate COVID-19 diagnosis.  相似文献   

5.
Coronavirus disease (COVID-19) is an extremely infectious disease and possibly causes acute respiratory distress or in severe cases may lead to death. There has already been some research in dealing with coronavirus using machine learning algorithms, but few have presented a truly comprehensive view. In this research, we show how convolutional neural network (CNN) can be useful to detect COVID-19 using chest X-ray images. We leverage the CNN-based pre-trained models as feature extractors to substantiate transfer learning and add our own classifier in detecting COVID-19. In this regard, we evaluate performance of five different pre-trained models with fine-tuning the weights from some of the top layers. We also develop an ensemble model where the predictions from all chosen pre-trained models are combined to generate a single output. The models are evaluated through 5-fold cross validation using two publicly available data repositories containing healthy and infected (both COVID-19 and other pneumonia) chest X-ray images. We also leverage two different visualization techniques to observe how efficiently the models extract important features related to the detection of COVID- 19 patients. The models show high degree of accuracy, precision, and sensitivity. We believe that the models will aid medical professionals with improved and faster patient screening and pave a way to further COVID-19 research.  相似文献   

6.
Artificial intelligence, which has recently emerged with the rapid development of information technology, is drawing attention as a tool for solving various problems demanded by society and industry. In particular, convolutional neural networks (CNNs), a type of deep learning technology, are highlighted in computer vision fields, such as image classification and recognition and object tracking. Training these CNN models requires a large amount of data, and a lack of data can lead to performance degradation problems due to overfitting. As CNN architecture development and optimization studies become active, ensemble techniques have emerged to perform image classification by combining features extracted from multiple CNN models. In this study, data augmentation and contour image extraction were performed to overcome the data shortage problem. In addition, we propose a hierarchical ensemble technique to achieve high image classification accuracy, even if trained from a small amount of data. First, we trained the UC-Merced land use dataset and the contour images for each image on pretrained VGGNet, GoogLeNet, ResNet, DenseNet, and EfficientNet. We then apply a hierarchical ensemble technique to the number of cases in which each model can be deployed. These experiments were performed in cases where the proportion of training datasets was 30%, 50%, and 70%, resulting in a performance improvement of up to 4.68% compared to the average accuracy of the entire model.  相似文献   

7.
ABSTRACT

An architecture for automatic lung tissue classification method based on the Deep Learning techniques is designed in this paper. Recent works on Deep Learning techniques achieved impressive results in the field of medical image classification. So, we designed a Convolution Neural Network (CNN) for the classification of five categories of Interstitial Lung Diseases (ILD) patterns in High-Resolution Computed Tomography (HRCT) images. The CNN consists of 3 Convolution layers, Leaky ReLU activation followed by Maximum pooling layer and dense layer. The last Fully Connected (FC) layer has 5 outputs equivalent to the classes considered such as Normal, Ground Glass (GG), Emphysema, Micro Nodules, and Fibrosis. The proposed CNN is trained and evaluated on the publicly available ILD database provided by the University Hospitals of Geneva (HUG). Experimental results are compared with the state-of-art, which shows an outstanding performance of the proposed CNN model giving 94.67% accuracy and 94.65% Favg .  相似文献   

8.
COVID-19 remains to proliferate precipitously in the world. It has significantly influenced public health, the world economy, and the persons’ lives. Hence, there is a need to speed up the diagnosis and precautions to deal with COVID-19 patients. With this explosion of this pandemic, there is a need for automated diagnosis tools to help specialists based on medical images. This paper presents a hybrid Convolutional Neural Network (CNN)-based classification and segmentation approach for COVID-19 detection from Computed Tomography (CT) images. The proposed approach is employed to classify and segment the COVID-19, pneumonia, and normal CT images. The classification stage is firstly applied to detect and classify the input medical CT images. Then, the segmentation stage is performed to distinguish between pneumonia and COVID-19 CT images. The classification stage is implemented based on a simple and efficient CNN deep learning model. This model comprises four Rectified Linear Units (ReLUs), four batch normalization layers, and four convolutional (Conv) layers. The Conv layer depends on filters with sizes of 64, 32, 16, and 8. A 2 × 2 window and a stride of 2 are employed in the utilized four max-pooling layers. A soft-max activation function and a Fully-Connected (FC) layer are utilized in the classification stage to perform the detection process. For the segmentation process, the Simplified Pulse Coupled Neural Network (SPCNN) is utilized in the proposed hybrid approach. The proposed segmentation approach is based on salient object detection to localize the COVID-19 or pneumonia region, accurately. To summarize the contributions of the paper, we can say that the classification process with a CNN model can be the first stage a highly-effective automated diagnosis system. Once the images are accepted by the system, it is possible to perform further processing through a segmentation process to isolate the regions of interest in the images. The region of interest can be assesses both automatically and through experts. This strategy helps so much in saving the time and efforts of specialists with the explosion of COVID-19 pandemic in the world. The proposed classification approach is applied for different scenarios of 80%, 70%, or 60% of the data for training and 20%, 30, or 40% of the data for testing, respectively. In these scenarios, the proposed approach achieves classification accuracies of 100%, 99.45%, and 98.55%, respectively. Thus, the obtained results demonstrate and prove the efficacy of the proposed approach for assisting the specialists in automated medical diagnosis services.  相似文献   

9.
The latest studies with radiological imaging techniques indicate that X-ray images provide valuable details on the Coronavirus disease 2019 (COVID-19). The usage of sophisticated artificial intelligence technology (AI) and the radiological images can help in diagnosing the disease reliably and addressing the problem of the shortage of trained doctors in remote villages. In this research, the automated diagnosis of Coronavirus disease was performed using a dataset of X-ray images of patients with severe bacterial pneumonia, reported COVID-19 disease, and normal cases. The goal of the study is to analyze the achievements for medical image recognition of state-of-the-art neural networking architectures. Transfer Learning technique has been implemented in this work. Transfer learning is an ambitious task, but it results in impressive outcomes for identifying distinct patterns in tiny datasets of medical images. The findings indicate that deep learning with X-ray imagery could retrieve important biomarkers relevant for COVID-19 disease detection. Since all diagnostic measures show failure levels that pose questions, the scientific profession should determine the probability of integration of X-rays with the clinical treatment, utilizing the results. The proposed model achieved 96.73% accuracy outperforming the ResNet50 and traditional Resnet18 models. Based on our findings, the proposed system can help the specialist doctors in making verdicts for COVID-19 detection.  相似文献   

10.
The purpose of this research is the segmentation of lungs computed tomography (CT) scan for the diagnosis of COVID-19 by using machine learning methods. Our dataset contains data from patients who are prone to the epidemic. It contains three types of lungs CT images (Normal, Pneumonia, and COVID-19) collected from two different sources; the first one is the Radiology Department of Nishtar Hospital Multan and Civil Hospital Bahawalpur, Pakistan, and the second one is a publicly free available medical imaging database known as Radiopaedia. For the preprocessing, a novel fuzzy c-mean automated region-growing segmentation approach is deployed to take an automated region of interest (ROIs) and acquire 52 hybrid statistical features for each ROIs. Also, 12 optimized statistical features are selected via the chi-square feature reduction technique. For the classification, five machine learning classifiers named as deep learning J4, multilayer perceptron, support vector machine, random forest, and naive Bayes are deployed to optimize the hybrid statistical features dataset. It is observed that the deep learning J4 has promising results (sensitivity and specificity: 0.987; accuracy: 98.67%) among all the deployed classifiers. As a complementary study, a statistical work is devoted to the use of a new statistical model to fit the main datasets of COVID-19 collected in Pakistan.  相似文献   

11.
Indian agriculture is striving to achieve sustainable intensification, the system aiming to increase agricultural yield per unit area without harming natural resources and the ecosystem. Modern farming employs technology to improve productivity. Early and accurate analysis and diagnosis of plant disease is very helpful in reducing plant diseases and improving plant health and food crop productivity. Plant disease experts are not available in remote areas thus there is a requirement of automatic low-cost, approachable and reliable solutions to identify the plant diseases without the laboratory inspection and expert's opinion. Deep learning-based computer vision techniques like Convolutional Neural Network (CNN) and traditional machine learning-based image classification approaches are being applied to identify plant diseases. In this paper, the CNN model is proposed for the classification of rice and potato plant leaf diseases. Rice leaves are diagnosed with bacterial blight, blast, brown spot and tungro diseases. Potato leaf images are classified into three classes: healthy leaves, early blight and late blight diseases. Rice leaf dataset with 5932 images and 1500 potato leaf images are used in the study. The proposed CNN model was able to learn hidden patterns from the raw images and classify rice images with 99.58% accuracy and potato leaves with 97.66% accuracy. The results demonstrate that the proposed CNN model performed better when compared with other machine learning image classifiers such as Support Vector Machine (SVM), K-Nearest Neighbors (KNN), Decision Tree and Random Forest.  相似文献   

12.
Image recognition has always been a hot research topic in the scientific community and industry. The emergence of convolutional neural networks(CNN) has made this technology turned into research focus on the field of computer vision, especially in image recognition. But it makes the recognition result largely dependent on the number and quality of training samples. Recently, DCGAN has become a frontier method for generating images, sounds, and videos. In this paper, DCGAN is used to generate sample that is difficult to collect and proposed an efficient design method of generating model. We combine DCGAN with CNN for the second time. Use DCGAN to generate samples and training in image recognition model, which based by CNN. This method can enhance the classification model and effectively improve the accuracy of image recognition. In the experiment, we used the radar profile as dataset for 4 categories and achieved satisfactory classification performance. This paper applies image recognition technology to the meteorological field.  相似文献   

13.
14.
COVID-19 has become a pandemic, with cases all over the world, with widespread disruption in some countries, such as Italy, US, India, South Korea, and Japan. Early and reliable detection of COVID-19 is mandatory to control the spread of infection. Moreover, prediction of COVID-19 spread in near future is also crucial to better plan for the disease control. For this purpose, we proposed a robust framework for the analysis, prediction, and detection of COVID-19. We make reliable estimates on key pandemic parameters and make predictions on the point of inflection and possible washout time for various countries around the world. The estimates, analysis and predictions are based on the data gathered from Johns Hopkins Center during the time span of April 21 to June 27, 2020. We use the normal distribution for simple and quick predictions of the coronavirus pandemic model and estimate the parameters of Gaussian curves using the least square parameter curve fitting for several countries in different continents. The predictions rely on the possible outcomes of Gaussian time evolution with the central limit theorem of statistics the predictions to be well justified. The parameters of Gaussian distribution, i.e., maximum time and width, are determined through a statistical χ2-fit for the purpose of doubling times after April 21, 2020. For COVID-19 detection, we proposed a novel method based on the Histogram of Oriented Gradients (HOG) and CNN in multi-class classification scenario i.e., Normal, COVID-19, viral pneumonia etc. Experimental results show the effectiveness of our framework for reliable prediction and detection of COVID-19.  相似文献   

15.
A chest radiology scan can significantly aid the early diagnosis and management of COVID-19 since the virus attacks the lungs. Chest X-ray (CXR) gained much interest after the COVID-19 outbreak thanks to its rapid imaging time, widespread availability, low cost, and portability. In radiological investigations, computer-aided diagnostic tools are implemented to reduce intra- and inter-observer variability. Using lately industrialized Artificial Intelligence (AI) algorithms and radiological techniques to diagnose and classify disease is advantageous. The current study develops an automatic identification and classification model for CXR pictures using Gaussian Filtering based Optimized Synergic Deep Learning using Remora Optimization Algorithm (GF-OSDL-ROA). This method is inclusive of preprocessing and classification based on optimization. The data is preprocessed using Gaussian filtering (GF) to remove any extraneous noise from the image’s edges. Then, the OSDL model is applied to classify the CXRs under different severity levels based on CXR data. The learning rate of OSDL is optimized with the help of ROA for COVID-19 diagnosis showing the novelty of the work. OSDL model, applied in this study, was validated using the COVID-19 dataset. The experiments were conducted upon the proposed OSDL model, which achieved a classification accuracy of 99.83%, while the current Convolutional Neural Network achieved less classification accuracy, i.e., 98.14%.  相似文献   

16.
The prompt spread of Coronavirus (COVID-19) subsequently adorns a big threat to the people around the globe. The evolving and the perpetually diagnosis of coronavirus has become a critical challenge for the healthcare sector. Drastically increase of COVID-19 has rendered the necessity to detect the people who are more likely to get infected. Lately, the testing kits for COVID-19 are not available to deal it with required proficiency, along with-it countries have been widely hit by the COVID-19 disruption. To keep in view the need of hour asks for an automatic diagnosis system for early detection of COVID-19. It would be a feather in the cap if the early diagnosis of COVID-19 could reveal that how it has been affecting the masses immensely. According to the apparent clinical research, it has unleashed that most of the COVID-19 cases are more likely to fall for a lung infection. The abrupt changes do require a solution so the technology is out there to pace up, Chest X-ray and Computer tomography (CT) scan images could significantly identify the preliminaries of COVID-19 like lungs infection. CT scan and X-ray images could flourish the cause of detecting at an early stage and it has proved to be helpful to radiologists and the medical practitioners. The unbearable circumstances compel us to flatten the curve of the sufferers so a need to develop is obvious, a quick and highly responsive automatic system based on Artificial Intelligence (AI) is always there to aid against the masses to be prone to COVID-19. The proposed Intelligent decision support system for COVID-19 empowered with deep learning (ID2S-COVID19-DL) study suggests Deep learning (DL) based Convolutional neural network (CNN) approaches for effective and accurate detection to the maximum extent it could be, detection of coronavirus is assisted by using X-ray and CT-scan images. The primary experimental results here have depicted the maximum accuracy for training and is around 98.11 percent and for validation it comes out to be approximately 95.5 percent while statistical parameters like sensitivity and specificity for training is 98.03 percent and 98.20 percent respectively, and for validation 94.38 percent and 97.06 percent respectively. The suggested Deep Learning-based CNN model unleashed here opts for a comparable performance with medical experts and it is helpful to enhance the working productivity of radiologists. It could take the curve down with the downright contribution of radiologists, rapid detection of COVID-19, and to overcome this current pandemic with the proven efficacy.  相似文献   

17.
Early diagnosis of a pandemic disease like COVID-19 can help deal with a dire situation and help radiologists and other experts manage human resources more effectively. In a recent pandemic, laboratories perform diagnostics manually, which requires a lot of time and expertise of the laboratorial technicians to yield accurate results. Moreover, the cost of kits is high, and well-equipped labs are needed to perform this test. Therefore, other means of diagnosis is highly desirable. Radiography is one of the existing methods that finds its use in the diagnosis of COVID-19. The radiography observes change in Computed Tomography (CT) chest images of patients, developing a deep learning-based method to extract graphical features which are used for automated diagnosis of the disease ahead of laboratory-based testing. The proposed work suggests an Artificial Intelligence (AI) based technique for rapid diagnosis of COVID-19 from given volumetric chest CT images of patients by extracting its visual features and then using these features in the deep learning module. The proposed convolutional neural network aims to classify the infectious and non-infectious SARS-COV2 subjects. The proposed network utilizes 746 chests scanned CT images of 349 images belonging to COVID-19 positive cases, while 397 belong to negative cases of COVID-19. Our experiment resulted in an accuracy of 98.4%, sensitivity of 98.5%, specificity of 98.3%, precision of 97.1%, and F1-score of 97.8%. The additional parameters of classification error, mean absolute error (MAE), root-mean-square error (RMSE), and Matthew’s correlation coefficient (MCC) are used to evaluate our proposed work. The obtained result shows the outstanding performance for the classification of infectious and non-infectious for COVID-19 cases.  相似文献   

18.
19.
Knee Osteoarthritis (KOA) is a degenerative knee joint disease caused by ‘wear and tear’ of ligaments between the femur and tibial bones. Clinically, KOA is classified into four grades ranging from 1 to 4 based on the degradation of the ligament in between these two bones and causes suffering from impaired movement. Identifying this space between bones through the anterior view of a knee X-ray image is solely subjective and challenging. Automatic classification of this process helps in the selection of suitable treatment processes and customized knee implants. In this research, a new automatic classification of KOA images based on unsupervised local center of mass (LCM) segmentation method and deep Siamese Convolutional Neural Network (CNN) is presented. First-order statistics and the GLCM matrix are used to extract KOA anatomical Features from segmented images. The network is trained on our clinical data with 75 iterations with automatic weight updates to improve its validation accuracy. The assessment performed on the LCM segmented KOA images shows that our network can efficiently detect knee osteoarthritis, achieving about 93.2% accuracy along with multi-class classification accuracy of 72.01% and quadratic weighted Kappa of 0.86.  相似文献   

20.
Pulmonary diseases are common throughout the world, especially in developing countries. These diseases include chronic obstructive pulmonary diseases, pneumonia, asthma, tuberculosis, fibrosis, and recently COVID-19. In general, pulmonary diseases have a similar footprint on chest radiographs which makes them difficult to discriminate even for expert radiologists. In recent years, many image processing techniques and artificial intelligence models have been developed to quickly and accurately diagnose lung diseases. In this paper, the performance of four popular pretrained models (namely VGG16, DenseNet201, DarkNet19, and XceptionNet) in distinguishing between different pulmonary diseases was analyzed. To the best of our knowledge, this is the first published study to ever attempt to distinguish all four cases normal, pneumonia, COVID-19 and lung opacity from Chest-X-Ray (CXR) images. All models were trained using Chest-X-Ray (CXR) images, and statistically tested using 5-fold cross validation. Using individual models, XceptionNet outperformed all other models with a 94.775% accuracy and Area Under the Curve (AUC) of Receiver Operating Characteristic (ROC) of 99.84%. On the other hand, DarkNet19 represents a good compromise between accuracy, fast convergence, resource utilization, and near real time detection (0.33 s). Using a collection of models, the 97.79% accuracy achieved by Ensemble Features was the highest among all surveyed methods, but it takes the longest time to predict an image (5.68 s). An efficient effective decision support system can be developed using one of those approaches to assist radiologists in the field make the right assessment in terms of accuracy and prediction time, such a dependable system can be used in rural areas and various healthcare sectors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号