首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Deep learning (DL) techniques, which do not need complex pre-processing and feature analysis, are used in many areas of medicine and achieve promising results. On the other hand, in medical studies, a limited dataset decreases the abstraction ability of the DL model. In this context, we aimed to produce synthetic brain images including three tumor types (glioma, meningioma, and pituitary), unlike traditional data augmentation methods, and classify them with DL. This study proposes a tumor classification model consisting of a Dense Convolutional Network (DenseNet121)-based DL model to prevent forgetting problems in deep networks and delay information flow between layers. By comparing models trained on two different datasets, we demonstrated the effect of synthetic images generated by Cycle Generative Adversarial Network (CycleGAN) on the generalization of DL. One model is trained only on the original dataset, while the other is trained on the combined dataset of synthetic and original images. Synthetic data generated by CycleGAN improved the best accuracy values for glioma, meningioma, and pituitary tumor classes from 0.9633, 0.9569, and 0.9904 to 0.9968, 0.9920, and 0.9952, respectively. The developed model using synthetic data obtained a higher accuracy value than the related studies in the literature. Additionally, except for pixel-level and affine transform data augmentation, synthetic data has been generated in the figshare brain dataset for the first time.  相似文献   

2.
Brain tumor refers to the formation of abnormal cells in the brain. It can be divided into benign and malignant. The main diagnostic methods for brain tumors are plain X-ray film, Magnetic resonance imaging (MRI), and so on. However, these artificial diagnosis methods are easily affected by external factors. Scholars have made such impressive progress in brain tumors classification by using convolutional neural network (CNN). However, there are still some problems: (i) There are many parameters in CNN, which require much calculation. (ii) The brain tumor data sets are relatively small, which may lead to the overfitting problem in CNN. In this paper, our team proposes a novel model (RBEBT) for the automatic classification of brain tumors. We use fine-tuned ResNet18 to extract the features of brain tumor images. The RBEBT is different from the traditional CNN models in that the randomized neural network (RNN) is selected as the classifier. Meanwhile, our team selects the bat algorithm (BA) to optimize the parameters of RNN. We use five-fold cross-validation to verify the superiority of the RBEBT. The accuracy (ACC), specificity (SPE), precision (PRE), sensitivity (SEN), and F1-score (F1) are 99.00%, 95.00%, 99.00%, 100.00%, and 100.00%. The classification performance of the RBEBT is greater than 95%, which can prove that the RBEBT is an effective model to classify brain tumors.  相似文献   

3.
Brain tumor is one of the most dangerous disease that causes due to uncontrollable and abnormal cell partition. In this paper, we have used MRI brain scan in comparison with CT brain scan as it is less harmful to detect brain tumor. We considered watershed segmentation technique for brain tumor detection. The proposed methodology is divided as follows: pre-processing, computing foreground applying watershed, extract and supply features to machine learning algorithms. Consequently, this study is tested on big data set of images and we achieved acceptable accuracy from K-NN classification algorithm in detection of brain tumor.  相似文献   

4.
A brain tumor is a mass or growth of abnormal cells in the brain. In children and adults, brain tumor is considered one of the leading causes of death. There are several types of brain tumors, including benign (non-cancerous) and malignant (cancerous) tumors. Diagnosing brain tumors as early as possible is essential, as this can improve the chances of successful treatment and survival. Considering this problem, we bring forth a hybrid intelligent deep learning technique that uses several pre-trained models (Resnet50, Vgg16, Vgg19, U-Net) and their integration for computer-aided detection and localization systems in brain tumors. These pre-trained and integrated deep learning models have been used on the publicly available dataset from The Cancer Genome Atlas. The dataset consists of 120 patients. The pre-trained models have been used to classify tumor or no tumor images, while integrated models are applied to segment the tumor region correctly. We have evaluated their performance in terms of loss, accuracy, intersection over union, Jaccard distance, dice coefficient, and dice coefficient loss. From pre-trained models, the U-Net model achieves higher performance than other models by obtaining 95% accuracy. In contrast, U-Net with ResNet-50 outperforms all other models from integrated pre-trained models and correctly classified and segmented the tumor region.  相似文献   

5.
With the development of deep learning and Convolutional Neural Networks (CNNs), the accuracy of automatic food recognition based on visual data have significantly improved. Some research studies have shown that the deeper the model is, the higher the accuracy is. However, very deep neural networks would be affected by the overfitting problem and also consume huge computing resources. In this paper, a new classification scheme is proposed for automatic food-ingredient recognition based on deep learning. We construct an up-to-date combinational convolutional neural network (CBNet) with a subnet merging technique. Firstly, two different neural networks are utilized for learning interested features. Then, a well-designed feature fusion component aggregates the features from subnetworks, further extracting richer and more precise features for image classification. In order to learn more complementary features, the corresponding fusion strategies are also proposed, including auxiliary classifiers and hyperparameters setting. Finally, CBNet based on the well-known VGGNet, ResNet and DenseNet is evaluated on a dataset including 41 major categories of food ingredients and 100 images for each category. Theoretical analysis and experimental results demonstrate that CBNet achieves promising accuracy for multi-class classification and improves the performance of convolutional neural networks.  相似文献   

6.
Skin cancer (melanoma) is one of the most aggressive of the cancers and the prevalence has significantly increased due to increased exposure to ultraviolet radiation. Therefore, timely detection and management of the lesion is a critical consideration in order to improve lifestyle and reduce mortality. To this end, we have designed, implemented and analyzed a hybrid approach entailing convolutional neural networks (CNN) and local binary patterns (LBP). The experiments have been performed on publicly accessible datasets ISIC 2017, 2018 and 2019 (HAM10000) with data augmentation for in-distribution generalization. As a novel contribution, the CNN architecture is enhanced with an intelligible layer, LBP, that extracts the pertinent visual patterns. Classification of Basal Cell Carcinoma, Actinic Keratosis, Melanoma and Squamous Cell Carcinoma has been evaluated on 8035 and 3494 cases for training and testing, respectively. Experimental outcomes with cross-validation depict a plausible performance with an average accuracy of 97.29%, sensitivity of 95.63% and specificity of 97.90%. Hence, the proposed approach can be used in research and clinical settings to provide second opinions, closely approximating experts’ intuition.  相似文献   

7.
Vehicle type classification is considered a central part of an intelligent traffic system. In recent years, deep learning had a vital role in object detection in many computer vision tasks. To learn high-level deep features and semantics, deep learning offers powerful tools to address problems in traditional architectures of handcrafted feature-extraction techniques. Unlike other algorithms using handcrated visual features, convolutional neural network is able to automatically learn good features of vehicle type classification. This study develops an optimized automatic surveillance and auditing system to detect and classify vehicles of different categories. Transfer learning is used to quickly learn the features by recording a small number of training images from vehicle frontal view images. The proposed system employs extensive data-augmentation techniques for effective training while avoiding the problem of data shortage. In order to capture rich and discriminative information of vehicles, the convolutional neural network is fine-tuned for the classification of vehicle types using the augmented data. The network extracts the feature maps from the entire dataset and generates a label for each object (vehicle) in an image, which can help in vehicle-type detection and classification. Experimental results on a public dataset and our own dataset demonstrated that the proposed method is quite effective in detection and classification of different types of vehicles. The experimental results show that the proposed model achieves 96.04% accuracy on vehicle type classification.  相似文献   

8.
针对地震勘探中噪声压制的问题,构建了一种适合分类和识别地震子波的卷积神经网络模型.首先对卷积神经网络模型的激活函数、卷积核大小以及归一化层等进行了设计,然后利用已搭建好的卷积神经网络对地震信号的时频谱图进行特征提取,最后实现了不同类型的含噪地震信号的分类和识别.实验结果表明,该模型有高分类率和识别率及较好的抗干扰能力,...  相似文献   

9.
Heart disease (HD) is a serious widespread life-threatening disease. The heart of patients with HD fails to pump sufficient amounts of blood to the entire body. Diagnosing the occurrence of HD early and efficiently may prevent the manifestation of the debilitating effects of this disease and aid in its effective treatment. Classical methods for diagnosing HD are sometimes unreliable and insufficient in analyzing the related symptoms. As an alternative, noninvasive medical procedures based on machine learning (ML) methods provide reliable HD diagnosis and efficient prediction of HD conditions. However, the existing models of automated ML-based HD diagnostic methods cannot satisfy clinical evaluation criteria because of their inability to recognize anomalies in extracted symptoms represented as classification features from patients with HD. In this study, we propose an automated heart disease diagnosis (AHDD) system that integrates a binary convolutional neural network (CNN) with a new multi-agent feature wrapper (MAFW) model. The MAFW model consists of four software agents that operate a genetic algorithm (GA), a support vector machine (SVM), and Naïve Bayes (NB). The agents instruct the GA to perform a global search on HD features and adjust the weights of SVM and BN during initial classification. A final tuning to CNN is then performed to ensure that the best set of features are included in HD identification. The CNN consists of five layers that categorize patients as healthy or with HD according to the analysis of optimized HD features. We evaluate the classification performance of the proposed AHDD system via 12 common ML techniques and conventional CNN models by using a cross-validation technique and by assessing six evaluation criteria. The AHDD system achieves the highest accuracy of 90.1%, whereas the other ML and conventional CNN models attain only 72.3%–83.8% accuracy on average. Therefore, the AHDD system proposed herein has the highest capability to identify patients with HD. This system can be used by medical practitioners to diagnose HD efficiently.  相似文献   

10.
The brain tumour is the mass where some tissues become old or damaged, but they do not die or not leave their space. Mainly brain tumour masses occur due to malignant masses. These tissues must die so that new tissues are allowed to be born and take their place. Tumour segmentation is a complex and time-taking problem due to the tumour’s size, shape, and appearance variation. Manually finding such masses in the brain by analyzing Magnetic Resonance Images (MRI) is a crucial task for experts and radiologists. Radiologists could not work for large volume images simultaneously, and many errors occurred due to overwhelming image analysis. The main objective of this research study is the segmentation of tumors in brain MRI images with the help of digital image processing and deep learning approaches. This research study proposed an automatic model for tumor segmentation in MRI images. The proposed model has a few significant steps, which first apply the pre-processing method for the whole dataset to convert Neuroimaging Informatics Technology Initiative (NIFTI) volumes into the 3D NumPy array. In the second step, the proposed model adopts U-Net deep learning segmentation algorithm with an improved layered structure and sets the updated parameters. In the third step, the proposed model uses state-of-the-art Medical Image Computing and Computer-Assisted Intervention (MICCAI) BRATS 2018 dataset with MRI modalities such as T1, T1Gd, T2, and Fluid-attenuated inversion recovery (FLAIR). Tumour types in MRI images are classified according to the tumour masses. Labelling of these masses carried by state-of-the-art approaches such that the first is enhancing tumour (label 4), edema (label 2), necrotic and non-enhancing tumour core (label 1), and the remaining region is label 0 such that edema (whole tumour), necrosis and active. The proposed model is evaluated and gets the Dice Coefficient (DSC) value for High-grade glioma (HGG) volumes for their test set-a, test set-b, and test set-c 0.9795, 0.9855 and 0.9793, respectively. DSC value for the Low-grade glioma (LGG) volumes for the test set is 0.9950, which shows the proposed model has achieved significant results in segmenting the tumour in MRI using deep learning approaches. The proposed model is fully automatic that can implement in clinics where human experts consume maximum time to identify the tumorous region of the brain MRI. The proposed model can help in a way it can proceed rapidly by treating the tumor segmentation in MRI.  相似文献   

11.
Tumor detection has been an active research topic in recent years due to the high mortality rate. Computer vision (CV) and image processing techniques have recently become popular for detecting tumors in MRI images. The automated detection process is simpler and takes less time than manual processing. In addition, the difference in the expanding shape of brain tumor tissues complicates and complicates tumor detection for clinicians. We proposed a new framework for tumor detection as well as tumor classification into relevant categories in this paper. For tumor segmentation, the proposed framework employs the Particle Swarm Optimization (PSO) algorithm, and for classification, the convolutional neural network (CNN) algorithm. Popular preprocessing techniques such as noise removal, image sharpening, and skull stripping are used at the start of the segmentation process. Then, PSO-based segmentation is applied. In the classification step, two pre-trained CNN models, alexnet and inception-V3, are used and trained using transfer learning. Using a serial approach, features are extracted from both trained models and fused features for final classification. For classification, a variety of machine learning classifiers are used. Average dice values on datasets BRATS-2018 and BRATS-2017 are 98.11 percent and 98.25 percent, respectively, whereas average jaccard values are 96.30 percent and 96.57% (Segmentation Results). The results were extended on the same datasets for classification and achieved 99.0% accuracy, sensitivity of 0.99, specificity of 0.99, and precision of 0.99. Finally, the proposed method is compared to state-of-the-art existing methods and outperforms them.  相似文献   

12.
Active learning has been widely utilized to reduce the labeling cost of supervised learning. By selecting specific instances to train the model, the performance of the model was improved within limited steps. However, rare work paid attention to the effectiveness of active learning on it. In this paper, we proposed a deep active learning model with bidirectional encoder representations from transformers (BERT) for text classification. BERT takes advantage of the self-attention mechanism to integrate contextual information, which is beneficial to accelerate the convergence of training. As for the process of active learning, we design an instance selection strategy based on posterior probabilities Margin, Intra-correlation and Inter-correlation (MII). Selected instances are characterized by small margin, low intra-cohesion and high inter-cohesion. We conduct extensive experiments and analytics with our methods. The effect of learner is compared while the effect of sampling strategy and text classification is assessed from three real datasets. The results show that our method outperforms the baselines in terms of accuracy.  相似文献   

13.
COVID-19 remains to proliferate precipitously in the world. It has significantly influenced public health, the world economy, and the persons’ lives. Hence, there is a need to speed up the diagnosis and precautions to deal with COVID-19 patients. With this explosion of this pandemic, there is a need for automated diagnosis tools to help specialists based on medical images. This paper presents a hybrid Convolutional Neural Network (CNN)-based classification and segmentation approach for COVID-19 detection from Computed Tomography (CT) images. The proposed approach is employed to classify and segment the COVID-19, pneumonia, and normal CT images. The classification stage is firstly applied to detect and classify the input medical CT images. Then, the segmentation stage is performed to distinguish between pneumonia and COVID-19 CT images. The classification stage is implemented based on a simple and efficient CNN deep learning model. This model comprises four Rectified Linear Units (ReLUs), four batch normalization layers, and four convolutional (Conv) layers. The Conv layer depends on filters with sizes of 64, 32, 16, and 8. A 2 × 2 window and a stride of 2 are employed in the utilized four max-pooling layers. A soft-max activation function and a Fully-Connected (FC) layer are utilized in the classification stage to perform the detection process. For the segmentation process, the Simplified Pulse Coupled Neural Network (SPCNN) is utilized in the proposed hybrid approach. The proposed segmentation approach is based on salient object detection to localize the COVID-19 or pneumonia region, accurately. To summarize the contributions of the paper, we can say that the classification process with a CNN model can be the first stage a highly-effective automated diagnosis system. Once the images are accepted by the system, it is possible to perform further processing through a segmentation process to isolate the regions of interest in the images. The region of interest can be assesses both automatically and through experts. This strategy helps so much in saving the time and efforts of specialists with the explosion of COVID-19 pandemic in the world. The proposed classification approach is applied for different scenarios of 80%, 70%, or 60% of the data for training and 20%, 30, or 40% of the data for testing, respectively. In these scenarios, the proposed approach achieves classification accuracies of 100%, 99.45%, and 98.55%, respectively. Thus, the obtained results demonstrate and prove the efficacy of the proposed approach for assisting the specialists in automated medical diagnosis services.  相似文献   

14.
Medical Resonance Imaging (MRI) is a noninvasive, nonradioactive, and meticulous diagnostic modality capability in the field of medical imaging. However, the efficiency of MR image reconstruction is affected by its bulky image sets and slow process implementation. Therefore, to obtain a high-quality reconstructed image we presented a sparse aware noise removal technique that uses convolution neural network (SANR_CNN) for eliminating noise and improving the MR image reconstruction quality. The proposed noise removal or denoising technique adopts a fast CNN architecture that aids in training larger datasets with improved quality, and SARN algorithm is used for building a dictionary learning technique for denoising large image datasets. The proposed SANR_CNN model also preserves the details and edges in the image during reconstruction. An experiment was conducted to analyze the performance of SANR_CNN in a few existing models in regard with peak signal-to-noise ratio (PSNR), structural similarity index (SSIM), and mean squared error (MSE). The proposed SANR_CNN model achieved higher PSNR, SSIM, and MSE efficiency than the other noise removal techniques. The proposed architecture also provides transmission of these denoised medical images through secured IoT architecture.  相似文献   

15.
Tissue segmentation is a fundamental and important task in nasopharyngeal images analysis. However, it is a challenging task to accurately and quickly segment various tissues in the nasopharynx region due to the small difference in gray value between tissues in the nasopharyngeal image and the complexity of the tissue structure. In this paper, we propose a novel tissue segmentation approach based on a two-stage learning framework and U-Net. In the proposed methodology, the network consists of two segmentation modules. The first module performs rough segmentation and the second module performs accurate segmentation. Considering the training time and the limitation of computing resources, the structure of the second module is simpler and the number of network layers is less. In addition, our segmentation module is based on U-Net and incorporates a skip structure, which can make full use of the original features of the data and avoid feature loss. We evaluated our proposed method on the nasopharyngeal dataset provided by West China Hospital of Sichuan University. The experimental results show that the proposed method is superior to many standard segmentation structures and the recently proposed nasopharyngeal tissue segmentation method, and can be easily generalized across different tissue types in various organs.  相似文献   

16.
The sewer system plays an important role in protecting rainfall and treating urban wastewater. Due to the harsh internal environment and complex structure of the sewer, it is difficult to monitor the sewer system. Researchers are developing different methods, such as the Internet of Things and Artificial Intelligence, to monitor and detect the faults in the sewer system. Deep learning is a promising artificial intelligence technology that can effectively identify and classify different sewer system defects. However, the existing deep learning based solution does not provide high accuracy prediction and the defect class considered for classification is very small, which can affect the robustness of the model in the constraint environment. As a result, this paper proposes a sewer condition monitoring framework based on deep learning, which can effectively detect and evaluate defects in sewer pipelines with high accuracy. We also introduce a large dataset of sewer defects with 20 different defect classes found in the sewer pipeline. This study modified the original RegNet model by modifying the squeeze excitation (SE) block and adding the dropout layer and Leaky Rectified Linear Units (LeakyReLU) activation function in the Block structure of RegNet model. This study explored different deep learning methods such as RegNet, ResNet50, very deep convolutional networks (VGG), and GoogleNet to train on the sewer defect dataset. The experimental results indicate that the proposed system framework based on the modified-RegNet (RegNet+) model achieves the highest accuracy of 99.5 compared with the commonly used deep learning models. The proposed model provides a robust deep learning model that can effectively classify 20 different sewer defects and be utilized in real-world sewer condition monitoring applications.  相似文献   

17.
The identification of brain tumors is multifarious work for the separation of the similar intensity pixels from their surrounding neighbours. The detection of tumors is performed with the help of automatic computing technique as presented in the proposed work. The non-active cells in brain region are known to be benign and they will never cause the death of the patient. These non-active cells follow a uniform pattern in brain and have lower density than the surrounding pixels. The Magnetic Resonance (MR) image contrast is improved by the cost map construction technique. The deep learning algorithm for differentiating the normal brain MRI images from glioma cases is implemented in the proposed method. This technique permits to extract the linear features from the brain MR image and glioma tumors are detected based on these extracted features. Using k-mean clustering algorithm the tumor regions in glioma are classified. The proposed algorithm provides high sensitivity, specificity and tumor segmentation accuracy.  相似文献   

18.
Various techniques to diagnose eye diseases such as diabetic retinopathy (DR), glaucoma (GLC), and age-related macular degeneration (AMD), are possible through deep learning algorithms. A few recent studies have examined a couple of major diseases and compared them with data from healthy subjects. However, multiple major eye diseases, such as DR, GLC, and AMD, could not be detected simultaneously by computer-aided systems to date. There were just high-performance-outcome researches on a pair of healthy and eye-diseased group, besides of four categories of fundus image classification. To have a better knowledge of multi-categorical classification of fundus photographs, we used optimal residual deep neural networks and effective image preprocessing techniques, such as shrinking the region of interest, iso-luminance plane contrast-limited adaptive histogram equalization, and data augmentation. Applying these to the classification of three eye diseases from currently available public datasets, we achieved peak and average accuracies of 91.16% and 85.79%, respectively. The specificities for images from the eyes of healthy, GLC, AMD, and DR patients were 90.06%, 99.63%, 99.82%, and 91.90%, respectively. The better specificity performances may alert patient in an early stage of eye diseases to prevent vision loss. This study presents a possible occurrence of a multi-categorical deep neural network technique that can be deemed as a successful pilot study of classification for the three most-common eye diseases and can be used for future assistive devices in computer-aided clinical applications.  相似文献   

19.
In medical imaging, segmenting brain tumor becomes a vital task, and it provides a way for early diagnosis and treatment. Manual segmentation of brain tumor in magnetic resonance (MR) images is a time‐consuming and challenging task. Hence, there is a need for a computer‐aided brain tumor segmentation approach. Using deep learning algorithms, a robust brain tumor segmentation approach is implemented by integrating convolution neural network (CNN) and multiple kernel K means clustering (MKKMC). In this proposed CNN‐MKKMC approach, classification of MR images into normal and abnormal is performed by CNN algorithm. At next, MKKMC algorithm is employed to segment the brain tumor from the abnormal brain image. The proposed CNN‐MKKMC algorithm is evaluated both visually and objectively in terms of accuracy, sensitivity, and specificity with the existing segmentation methods. The experimental results demonstrate that the proposed CNN‐MKKMC approach yields better accuracy in segmenting brain tumor with less time cost.  相似文献   

20.
Automated segmentation of blood vessels in retinal fundus images is essential for medical image analysis. The segmentation of retinal vessels is assumed to be essential to the progress of the decision support system for initial analysis and treatment of retinal disease. This article develops a new Grasshopper Optimization with Fuzzy Edge Detection based Retinal Blood Vessel Segmentation and Classification (GOFED-RBVSC) model. The proposed GOFED-RBVSC model initially employs contrast enhancement process. Besides, GOAFED approach is employed to detect the edges in the retinal fundus images in which the use of GOA adjusts the membership functions. The ORB (Oriented FAST and Rotated BRIEF) feature extractor is exploited to generate feature vectors. Finally, Improved Conditional Variational Auto Encoder (ICAVE) is utilized for retinal image classification, shows the novelty of the work. The performance validation of the GOFED-RBVSC model is tested using benchmark dataset, and the comparative study highlighted the betterment of the GOFED-RBVSC model over the recent approaches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号