首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
柴油机连杆大头轴瓦表面在加工过程中存在波纹度,表面波纹度严重影响轴承接触表面的润滑性能。针对这一问题,建立考虑表面波纹度的连杆组弹性流体动力学模型,分析不同波纹度幅值、阶次和数量对连杆大头轴承润滑特性影响规律。结果表明:随着波纹度幅值、阶次和数量的增加,最小油膜厚度总体先增大后减小,总摩擦功耗先减小后增大,表明合理分布的表面波纹度对轴承性能有积极影响,可提升轴承的润滑性能;基于Box-Behnken试验设计与响应面法对柴油机连杆大头轴承润滑特性进行研究,以轴瓦表面波纹度的幅值、阶次和数量为优化变量,以最小油膜厚度和总摩擦功耗为优化目标进行响应面分析,并结合带精英策略的非支配排序遗传算法进行优化。结果表明:不同轴瓦表面波纹度对连杆大头轴承润滑特性影响差异较大;相较轴瓦光滑表面,优化后最小油膜厚度增加了11%;总摩擦功耗降低了14%。  相似文献   

2.
针对柴油机连杆大头轴承润滑不良和摩擦磨损的问题,运用AVL POWER UNIT搭建连杆组柔性多体动力学模型,以连杆大头轴承间隙、轴承宽度和供油压力为设计变量,通过最优拉丁超立方试验设计方法构建输入矩阵,在Isight中建立RBF径向基神经网络代理模型,以最小油膜厚度、峰值油膜压力和平均粗糙接触有效压力为优化目标,采用NSGA-Ⅱ遗传算法进行多目标参数寻优,获得连杆大头轴承的最佳结构参数组合。相较于原始方案,优化方案的最小油膜厚度增加了0.60μm,峰值油膜压力减小了6.69MPa,平均粗糙接触有效压力减小了2.34MPa,综合润滑性能有所提升,可为连杆大头轴承优化设计提供理论参考。  相似文献   

3.
为了更加准确地预测轴承性能,提高轴承工作可靠性和寿命。基于弹性流体动力润滑理论,建立了卧式两缸柴油机连杆大头轴承的弹性流体动力润滑仿真模型。应用正交试验设计方法,以最大油膜压力、最小油膜厚度以及平均总摩擦功耗为考察指标,研究了轴承间隙、轴瓦宽度、油孔位置角和曲柄销油孔直径等因素对轴承润滑性能的影响。研究结果表明:最优方案与原方案相比,最小油膜厚度增加44.86%,最大油膜压力降低1.00%,平均总摩擦功耗增加4.84%。  相似文献   

4.
为实现车用发动机轴承工作可靠、耐久目的,应用摩擦学理论及发动机CAE技术对现有机型曲柄连杆机构工作过程进行分析,研究轴承间隙极限状态下轴承比压、轴心轨迹、最小油膜厚度随发动机转速的变化关系,从中对轴承润滑可靠性进行评价。研究结果表明,在发动机本体及边界条件未变下,曲轴主轴承最小油膜厚度随转速增大而减小,连杆大头轴承则随转速增大先增大后减小,最大轴承间隙下的最小油膜厚度比最小间隙下大40%,轴承均未出现干摩擦现象,波纹状轴瓦润滑性能优于平状轴瓦。  相似文献   

5.
柴油机曲轴主轴承润滑性能分析   总被引:3,自引:1,他引:2  
基于弹性流体动力润滑(EHD)和轴承动力学理论,计及轴瓦、轴颈的粗糙度及曲轴和轴承座变形的影响,建立四缸内燃机主轴承的润滑分析模型。在此模型的基础上,分析轴承间隙、供油压力和轴承宽度等参数对内燃机主轴承润滑性能的影响。结果表明:第4轴承的最小油膜厚度较小,最大油膜压力较大,摩擦功耗最大,即具有较差的摩擦性能;为减少摩擦功耗,应在保证可靠的润滑性能的前提下,适当地增大轴承间隙、减小供油压力和减小轴承宽度。对第4主轴承进行优化分析,优化后的最小油膜厚度增大,最大油膜压力减小,摩擦功耗有所降低。  相似文献   

6.
研究轴颈挠度和瓦块表面热弹变形对卧式水电机组径向滑动轴承静态润滑性能的影响。推导考虑轴颈挠度和轴瓦热弹变形后的油膜厚度表达式;用中心差分法结合ANSYS软件联立求解雷诺方程、能量方程、固体热传导方程、密度方程、黏度方程和轴瓦热弹变形等,得到径向滑动轴承的热弹流润滑(TEHD)特性,并与不计入轴颈挠度及轴瓦热弹变形的油膜动压润滑特性进行比较。结果表明:在考虑轴颈挠度和轴瓦瓦面热弹变形的影响后,油膜压力、温度、厚度沿着轴承宽度中心线的对称特性消失;油膜压力峰值增大,峰值点位置由轴向中心区偏移至出口区;油膜温度峰值增大,最高温度发生在出口区;润滑区内的最小油膜厚度大幅度减小,油膜最小厚度处于出口侧边界附近;轴承润滑流量减小,损耗略有增大;轴承稳态运行时,轴颈偏位角基本一致。  相似文献   

7.
李涵 《润滑与密封》2018,43(3):81-87
基于平均流量模型的广义Reynolds方程,推导考虑轴承形状误差的综合油膜厚度表达式;针对内燃机主轴承,建立其润滑分析计算模型,研究轴颈和轴瓦上的直线度误差和圆度误差对主轴承润滑性能的影响。结果表明:同种误差类型不同的素线线型影响差异较大,相较理想轴颈,都使得油膜压力增加,最小油膜厚度减小,摩擦损失功增加,其中线形峰值影响显著,线形对称性有利于改善轴颈倾斜;轴颈和轴瓦形状误差对润滑性能存在耦合的作用,其两者形状误差线形方向的差异使得部分地方油膜厚度出现增加或减小的情况;不同工况下形状误差对润滑性能的影响差异较大,随着转速的增加形状误差影响润滑性能程度加剧,最大油膜压力增加,最小油膜厚度减小,摩擦损失总功增大。  相似文献   

8.
表面形貌对内燃机主轴承润滑性能的影响   总被引:1,自引:0,他引:1  
李涵 《润滑与密封》2018,43(6):49-54
基于Patir和Cheng的平均流量方程和流量因子,计入表面形貌和弹性变形等因素,以流体润滑理论为基础,建立内燃机主轴承的润滑分析计算模型;研究主轴颈和轴瓦表面形貌对主轴承最小油膜厚度、最大油膜压力、摩擦损失总功和粗糙接触压力等润滑特性的影响。结果表明,轴颈和轴瓦表面粗糙度值大小和纹理方向对主轴承润滑性能具有显著影响,随着粗糙度值的增加,最小油膜厚度增加,油膜压力减小,粗糙接触压力增加,摩擦损失总功增大;相较横向纹理和各向同性,纵向纹理有利于提高最小油膜厚度,降低粗糙接触压力和摩擦损失总功;当粗糙度值不变时,随着内燃机转速和爆发压力的增加,粗糙接触压力增加,粗糙摩擦损失功率增加,导致磨损加剧效率降低。  相似文献   

9.
为了消除发动机连杆轴承在做功行程中两端出现的偏磨损,减少轴承的摩擦功耗,建立了某发动机曲轴系柔性多体动力学分析模型并进行了动力学仿真计算。根据连杆轴瓦内孔变形量仿真结果对轴瓦表面轮廓进行了修形设计。计算结果表明:对轴瓦轮廓修形后,轴承的润滑性能变化较小,最大油膜压力及最小油膜厚度随曲轴转角的变化趋势及数值大小均与原圆柱轮廓基本接近,消除了做功行程中的轴瓦偏磨问题,轴承的粗糙接触摩擦功耗无论是最大值还是平均值均降低,轴瓦表面粗糙接触压力沿轴瓦宽度方向分布均匀。  相似文献   

10.
采用耦合算法研究不同因素对船舶艉轴承弹流润滑性能的影响。以重载工况的船舶艉轴承为研究对象,建立轴瓦三维有限单元模型;通过有限单元法结合耦合算法求解油膜压力、油膜厚度、弹性变形,探讨了弹性模量、轴承间隙、长径比3种影响因素对艉轴承弹流润滑特性的动态影响。结果表明:弹性变形和油膜压力沿周向和轴向都近似抛物线分布,呈现先增后减的趋势,在周向180°附近取得最大值,因此在轴承周向和轴向的中点附近受轴承参数的影响较大,润滑状况需要特别关注;随弹性模量增加,油膜峰值压力增加,最大弹性变形量和最小厚度均减小,摩擦力和端泄流量同时增加,因此在一定区间内增大弹性模量能有效减小轴瓦产生的弹性变形;随轴承间隙增大,油膜峰值压力增加,最大弹性变形量和最小油膜厚度均减小,摩擦力和端泄流量变化不明显,因此在轴承安装时需控制合理的轴承间隙,确保轴承处于良好的润滑环境;随长径比增大,最大弹性变形量近似线性增加,油膜峰值压力、摩擦力、端泄流量均减小,最小油膜厚度几乎不变,因此在设计艉轴承长径比时,应综合考虑艉轴承在重载工况下可能产生的弹性变形以及弹性变形对润滑特性的影响。  相似文献   

11.
针对曲轴主轴承润滑性能的影响因素研究,建立考虑轴颈直径、轴承宽径比和轴承间隙3种轴承结构参数的曲轴主轴承热弹性流体动力润滑模型,分析不同轴承结构参数下的主轴承最大油膜压力、最小油膜厚度、最高轴承温度和最大摩擦功率损失。计算结果表明:轴承结构参数对主轴承润滑性能有很大影响;当轴颈直径和轴承宽径比变大时,主轴承最大油膜压力会出现减小的情况,最小油膜厚度变大、最高轴承温度升高和摩擦功率损失增加;内燃机主轴承的轴承间隙会随着轴颈直径和轴承宽径比的不同而有不同影响,且轴承间隙对主轴承最高温度和最大摩擦功率损失的影响较为显著。  相似文献   

12.
针对某型柴油机功率提升后主轴承润滑性能出现恶化的现象,计及表面形貌和弹性变形等因素影响,建立12V150柴油机主轴承润滑分析模型。运用弹性流体润滑、轴承动力学及Greenwood-Tripp微凸峰接触理论,分析功率提升后的主轴承润滑性能,提出需要改进的参数。分析表明:主轴承润滑性能变差的原因主要是功率提升后,曲轴和主轴承承受载荷加剧,油膜压力增加,引起轴颈弯曲或倾斜,导致主轴最小油膜度减小。研究曲轴平衡率、轴承宽度和润滑油黏度等参数对主轴承润滑性能的影响,提出了将曲轴平衡率由70%增大至90%,轴承宽度由46 mm增大至48 mm,并合理增加润滑油黏度的改进方案。结果表明:曲轴平衡率能有效地减小主轴颈倾斜角度,而轴承宽度和润滑油黏度对轴颈倾斜几乎没有影响;改进后主轴承最小油膜厚度提升了16.08%,峰值粗糙接触压力减小了37.11%,平均摩擦损失总功减小了13.08%。  相似文献   

13.
柴油机主轴承弹性流体动力学与多体动力学耦合仿真   总被引:1,自引:1,他引:0  
为更准确分析柴油机主轴承润滑特性及其影响因素,根据动载滑动轴承弹性流体动力润滑模型,利用AVLExcite软件对4D32柴油机主轴承进行多体动力学与弹性流体动力学耦合仿真研究。探讨了各主轴承载荷、最小油膜厚度、轴心轨迹、摩擦损失功率、机油填充率等参数在一个工作循环内的变化规律,并对比了主轴承最小油膜厚度随油槽方向和油孔位置等因素的变化关系。结果表明,最小油膜厚度的极小值均大于2μm,对其进行计算时要考虑边界接触压力的影响;第3主轴承轴心轨迹曲线绝大部分落在最外端,偏心率最大值持续期较长,最大油膜压力时间交替作用在轴瓦表面,极易引起轴瓦的磨损和疲劳剥落;优化设计油槽、油孔的方向和位置,有利于流体动压润滑的形成。  相似文献   

14.
This paper develops Aa computer program for the unsteady flow analysis of diesel engine lubrication systems. The possibility of cavitations developing in the big-end bearing groove due to the reciprocating motion of the connecting rod is investigated at the designed running speeds. The flow passage geometry especially the head loss coefficients of the bearing grooves s affects the minimum values of the head and the point when the development of the cavitations is initiated As the loss coefficient at the big-end increases and that of the small-end decreases, then the cavitations can be initiated. An orifice can be used to suppress the development of the cavitations and the diameter ratio and the location needs to be carefully selected to avoid unnecessary pressure loss. The channel size in the connecting rod is also an important parameter for optimization of the overall lubrication system; as the pipe diameter decreases, the minimum head increases and suppresses the cavitations from developing The minimum head always appears at the trailing groove of the big-end bearing.  相似文献   

15.
从目前的研究来看,织构的深度和载荷对油膜的润滑性能具有显著的影响,然而,在载荷变化的情况下,润滑膜的最小膜厚和黏性阻力是一个动态变化的过程。因此不同载荷下,最佳织构深度的选取还需系统地进行分析。通过建立沟槽型织构流体润滑模型,分析了织构的深度以及承载力对摩擦副的油膜厚度、压力、剪切力、以及摩擦因数的影响。结果表明:在承载力一定时,油膜厚度随织构深度的增加呈先增大后减小的趋势。在89 N载荷下时,存在最佳油膜厚度6.4184μm,此时织构深度为2.97μm,摩擦因数为0.0162。  相似文献   

16.
针对大型可倾瓦滑动轴承的湍流效应和瓦块变形,基于COMSOL和MATLAB的联合仿真构建三维热弹流体动力润滑模型.模型中,考虑湍流的修正雷诺方程、能量方程和热传导方程的计算采用COMSOL偏微分方程物理场模块实现,瓦块变形计算采用COMSOL中热应力物理场模块实现,多物理场耦合和计算过程控制利用MATLAB实现.基于所...  相似文献   

17.
为研究进水温度变化对水润滑轴承润滑特性的影响,采用有限差分法建立水润滑轴承弹流润滑模型,分析不同进水温度和载荷条件下水润滑轴承润滑特性的差异,并且通过试验验证摩擦因数的变化规律。研究发现:随着进水温度升高,轴承的水膜压力下降,但在水膜压力峰区域最大水膜压力升高、最小水膜厚度减小、偏心率增大,表明进水温度升高对润滑性能有着负面影响;在相同的载荷和转速下,轴承摩擦因数随着进水温度升高而下降,且高载荷下进水温度对摩擦因数的影响更大。通过试验发现进水温度越高对摩擦因数变化的影响越大,不同进水温度下载荷越低,载荷的变化对摩擦因数变化量的影响越大。  相似文献   

18.
基于弹性流体动力润滑、轴承动力学及平衡率计算理论,计入轴颈与轴瓦表面粗糙度、曲轴与轴承座弹性变形的影响,针对某大功率柴油机的曲轴系统,建立12缸V150柴油机主轴承的润滑分析计算模型,对12平衡重曲轴在不同平衡率下各主轴承的润滑性能进行分析,考虑轴承宽度、轴承间隙和供油压力等参数对平衡性较好的曲轴进行优化。结果表明:随平衡率的增加,最小油膜厚度先增加后减小,最大油膜压力和平均摩擦损失总功先减小后增大,平衡率80%的曲轴润滑性能较好,但主轴承MB5、MB6、MB7的最小油膜厚度均小于1μm;对其优化后各主轴承润滑性能均满足要求,且润滑性最差的主轴承MB7的最小油膜厚度增加19.7%,最大油膜压力减小11.8%。  相似文献   

19.
针对高速重载弧齿锥齿轮节圆位置,基于热弹流润滑理论进行齿面润滑特性分析,研究不同工况锥齿轮油膜各特征(压力、膜厚、温升)二维轮廓曲线的变化情况。结果表明:高速重载的工况使得Hertz压力峰与二次压力峰出现合并的现象,并且弹流润滑中经典的中央油膜平坦现象并不显著,仅当温度降低使润滑油黏度增加时,才逐渐出现了中央油膜平坦的现象。为了在工程实践中能够有针对性地调整工况参数来改善齿轮的润滑状态,分析油膜特征参数对输入参数的敏感性,发现工况参数中对油膜最大压力的影响程度由大到小为弹性模量、黏度、转速、功率;对油膜最大温升与最小油膜厚度的影响程度由大到小为黏度、转速、弹性模量、功率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号