首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Distributed denial-of-service (DDoS) attacks are designed to interrupt network services such as email servers and webpages in traditional computer networks. Furthermore, the enormous number of connected devices makes it difficult to operate such a network effectively. Software defined networks (SDN) are networks that are managed through a centralized control system, according to researchers. This controller is the brain of any SDN, composing the forwarding table of all data plane network switches. Despite the advantages of SDN controllers, DDoS attacks are easier to perpetrate than on traditional networks. Because the controller is a single point of failure, if it fails, the entire network will fail. This paper offers a Hybrid Deep Learning Intrusion Detection and Prevention (HDLIDP) framework, which blends signature-based and deep learning neural networks to detect and prevent intrusions. This framework improves detection accuracy while addressing all of the aforementioned problems. To validate the framework, experiments are done on both traditional and SDN datasets; the findings demonstrate a significant improvement in classification accuracy.  相似文献   

2.
In the design and planning of next-generation Internet of Things (IoT), telecommunication, and satellite communication systems, controller placement is crucial in software-defined networking (SDN). The programmability of the SDN controller is sophisticated for the centralized control system of the entire network. Nevertheless, it creates a significant loophole for the manifestation of a distributed denial of service (DDoS) attack straightforwardly. Furthermore, recently a Distributed Reflected Denial of Service (DRDoS) attack, an unusual DDoS attack, has been detected. However, minimal deliberation has given to this forthcoming single point of SDN infrastructure failure problem. Moreover, recently the high frequencies of DDoS attacks have increased dramatically. In this paper, a smart algorithm for planning SDN smart backup controllers under DDoS attack scenarios has proposed. Our proposed smart algorithm can recommend single or multiple smart backup controllers in the event of DDoS occurrence. The obtained simulated results demonstrate that the validation of the proposed algorithm and the performance analysis achieved 99.99% accuracy in placing the smart backup controller under DDoS attacks within 0.125 to 46508.7 s in SDN.  相似文献   

3.
Software-defined networking (SDN) represents a paradigm shift in network traffic management. It distinguishes between the data and control planes. APIs are then used to communicate between these planes. The controller is central to the management of an SDN network and is subject to security concerns. This research shows how a deep learning algorithm can detect intrusions in SDN-based IoT networks. Overfitting, low accuracy, and efficient feature selection is all discussed. We propose a hybrid machine learning-based approach based on Random Forest and Long Short-Term Memory (LSTM). In this study, a new dataset based specifically on Software Defined Networks is used in SDN. To obtain the best and most relevant features, a feature selection technique is used. Several experiments have revealed that the proposed solution is a superior method for detecting flow-based anomalies. The performance of our proposed model is also measured in terms of accuracy, recall, and precision. F1 rating and detection time Furthermore, a lightweight model for training is proposed, which selects fewer features while maintaining the model’s performance. Experiments show that the adopted methodology outperforms existing models.  相似文献   

4.
Recently, machine learning algorithms have been used in the detection and classification of network attacks. The performance of the algorithms has been evaluated by using benchmark network intrusion datasets such as DARPA98, KDD’99, NSL-KDD, UNSW-NB15, and Caida DDoS. However, these datasets have two major challenges: imbalanced data and high-dimensional data. Obtaining high accuracy for all attack types in the dataset allows for high accuracy in imbalanced datasets. On the other hand, having a large number of features increases the runtime load on the algorithms. A novel model is proposed in this paper to overcome these two concerns. The number of features in the model, which has been tested at CICIDS2017, is initially optimized by using genetic algorithms. This optimum feature set has been used to classify network attacks with six well-known classifiers according to high f1-score and g-mean value in minimum time. Afterwards, a multi-layer perceptron based ensemble learning approach has been applied to improve the models’ overall performance. The experimental results show that the suggested model is acceptable for feature selection as well as classifying network attacks in an imbalanced dataset, with a high f1-score (0.91) and g-mean (0.99) value. Furthermore, it has outperformed base classifier models and voting procedures.  相似文献   

5.
In software-defined networks (SDNs), controller placement is a critical factor in the design and planning for the future Internet of Things (IoT), telecommunication, and satellite communication systems. Existing research has concentrated largely on factors such as reliability, latency, controller capacity, propagation delay, and energy consumption. However, SDNs are vulnerable to distributed denial of service (DDoS) attacks that interfere with legitimate use of the network. The ever-increasing frequency of DDoS attacks has made it necessary to consider them in network design, especially in critical applications such as military, health care, and financial services networks requiring high availability. We propose a mathematical model for planning the deployment of SDN smart backup controllers (SBCs) to preserve service in the presence of DDoS attacks. Given a number of input parameters, our model has two distinct capabilities. First, it determines the optimal number of primary controllers to place at specific locations or nodes under normal operating conditions. Second, it recommends an optimal number of smart backup controllers for use with different levels of DDoS attacks. The goal of the model is to improve resistance to DDoS attacks while optimizing the overall cost based on the parameters. Our simulated results demonstrate that the model is useful in planning for SDN reliability in the presence of DDoS attacks while managing the overall cost.  相似文献   

6.
Distributed Denial of Service (DDoS) attack has become one of the most destructive network attacks which can pose a mortal threat to Internet security. Existing detection methods cannot effectively detect early attacks. In this paper, we propose a detection method of DDoS attacks based on generalized multiple kernel learning (GMKL) combining with the constructed parameter R. The super-fusion feature value (SFV) and comprehensive degree of feature (CDF) are defined to describe the characteristic of attack flow and normal flow. A method for calculating R based on SFV and CDF is proposed to select the combination of kernel function and regularization paradigm. A DDoS attack detection classifier is generated by using the trained GMKL model with R parameter. The experimental results show that kernel function and regularization parameter selection method based on R parameter reduce the randomness of parameter selection and the error of model detection, and the proposed method can effectively detect DDoS attacks in complex environments with higher detection rate and lower error rate.  相似文献   

7.
Currently, the Internet of Things (IoT) is revolutionizing communication technology by facilitating the sharing of information between different physical devices connected to a network. To improve control, customization, flexibility, and reduce network maintenance costs, a new Software-Defined Network (SDN) technology must be used in this infrastructure. Despite the various advantages of combining SDN and IoT, this environment is more vulnerable to various attacks due to the centralization of control. Most methods to ensure IoT security are designed to detect Distributed Denial-of-Service (DDoS) attacks, but they often lack mechanisms to mitigate their severity. This paper proposes a Multi-Attack Intrusion Detection System (MAIDS) for Software-Defined IoT Networks (SDN-IoT). The proposed scheme uses two machine-learning algorithms to improve detection efficiency and provide a mechanism to prevent false alarms. First, a comparative analysis of the most commonly used machine-learning algorithms to secure the SDN was performed on two datasets: the Network Security Laboratory Knowledge Discovery in Databases (NSL-KDD) and the Canadian Institute for Cybersecurity Intrusion Detection Systems (CICIDS2017), to select the most suitable algorithms for the proposed scheme and for securing SDN-IoT systems. The algorithms evaluated include Extreme Gradient Boosting (XGBoost), K-Nearest Neighbor (KNN), Random Forest (RF), Support Vector Machine (SVM), and Logistic Regression (LR). Second, an algorithm for selecting the best dataset for machine learning in Intrusion Detection Systems (IDS) was developed to enable effective comparison between the datasets used in the development of the security scheme. The results showed that XGBoost and RF are the best algorithms to ensure the security of SDN-IoT and to be applied in the proposed security system, with average accuracies of 99.88% and 99.89%, respectively. Furthermore, the proposed security scheme reduced the false alarm rate by 33.23%, which is a significant improvement over prevalent schemes. Finally, tests of the algorithm for dataset selection showed that the rates of false positives and false negatives were reduced when the XGBoost and RF algorithms were trained on the CICIDS2017 dataset, making it the best for IDS compared to the NSL-KDD dataset.  相似文献   

8.
The extensive proliferation of modern information services and ubiquitous digitization of society have raised cybersecurity challenges to new levels. With the massive number of connected devices, opportunities for potential network attacks are nearly unlimited. An additional problem is that many low-cost devices are not equipped with effective security protection so that they are easily hacked and applied within a network of bots (botnet) to perform distributed denial of service (DDoS) attacks. In this paper, we propose a novel intrusion detection system (IDS) based on deep learning that aims to identify suspicious behavior in modern heterogeneous information systems. The proposed approach is based on a deep recurrent autoencoder that learns time series of normal network behavior and detects notable network anomalies. An additional feature of the proposed IDS is that it is trained with an optimized dataset, where the number of features is reduced by 94% without classification accuracy loss. Thus, the proposed IDS remains stable in response to slight system perturbations, which do not represent network anomalies. The proposed approach is evaluated under different simulation scenarios and provides a 99% detection accuracy over known datasets while reducing the training time by an order of magnitude.  相似文献   

9.
Internet of Things (IoT) defines a network of devices connected to the internet and sharing a massive amount of data between each other and a central location. These IoT devices are connected to a network therefore prone to attacks. Various management tasks and network operations such as security, intrusion detection, Quality-of-Service provisioning, performance monitoring, resource provisioning, and traffic engineering require traffic classification. Due to the ineffectiveness of traditional classification schemes, such as port-based and payload-based methods, researchers proposed machine learning-based traffic classification systems based on shallow neural networks. Furthermore, machine learning-based models incline to misclassify internet traffic due to improper feature selection. In this research, an efficient multilayer deep learning based classification system is presented to overcome these challenges that can classify internet traffic. To examine the performance of the proposed technique, Moore-dataset is used for training the classifier. The proposed scheme takes the pre-processed data and extracts the flow features using a deep neural network (DNN). In particular, the maximum entropy classifier is used to classify the internet traffic. The experimental results show that the proposed hybrid deep learning algorithm is effective and achieved high accuracy for internet traffic classification, i.e., 99.23%. Furthermore, the proposed algorithm achieved the highest accuracy compared to the support vector machine (SVM) based classification technique and k-nearest neighbours (KNNs) based classification technique.  相似文献   

10.
Distributed Denial-of-Service (DDoS) has caused great damage to the network in the big data environment. Existing methods are characterized by low computational efficiency, high false alarm rate and high false alarm rate. In this paper, we propose a DDoS attack detection method based on network flow grayscale matrix feature via multiscale convolutional neural network (CNN). According to the different characteristics of the attack flow and the normal flow in the IP protocol, the seven-tuple is defined to describe the network flow characteristics and converted into a grayscale feature by binary. Based on the network flow grayscale matrix feature (GMF), the convolution kernel of different spatial scales is used to improve the accuracy of feature segmentation, global features and local features of the network flow are extracted. A DDoS attack classifier based on multi-scale convolution neural network is constructed. Experiments show that compared with correlation methods, this method can improve the robustness of the classifier, reduce the false alarm rate and the missing alarm rate.  相似文献   

11.
Recently, the Erebus attack has proved to be a security threat to the blockchain network layer, and the existing research has faced challenges in detecting the Erebus attack on the blockchain network layer. The cloud-based active defense and one-sidedness detection strategies are the hindrances in detecting Erebus attacks. This study designs a detection approach by establishing a ReliefF_WMRmR-based two-stage feature selection algorithm and a deep learning-based multimodal classification detection model for Erebus attacks and responding to security threats to the blockchain network layer. The goal is to improve the performance of Erebus attack detection methods, by combining the traffic behavior with the routing status based on multimodal deep feature learning. The traffic behavior and routing status were first defined and used to describe the attack characteristics at diverse stages of s leak monitoring, hidden traffic overlay, and transaction identity forgery. The goal is to clarify how an Erebus attack affects the routing transfer and traffic state on the blockchain network layer. Consequently, detecting objects is expected to become more relevant and sensitive. A two-stage feature selection algorithm was designed based on ReliefF and weighted maximum relevance minimum redundancy (ReliefF_WMRmR) to alleviate the overfitting of the training model caused by redundant information and noise in multiple source features of the routing status and traffic behavior. The ReliefF algorithm was introduced to select strong correlations and highly informative features of the labeled data. According to WMRmR, a feature selection framework was defined to eliminate weakly correlated features, eliminate redundant information, and reduce the detection overhead of the model. A multimodal deep learning model was constructed based on the multilayer perceptron (MLP) to settle the high false alarm rates incurred by multisource data. Using this model, isolated inputs and deep learning were conducted on the selected routing status and traffic behavior. Redundant intermodal information was removed because of the complementarity of the multimodal network, which was followed by feature fusion and output feature representation to boost classification detection precision. The experimental results demonstrate that the proposed method can detect features, such as traffic data, at key link nodes and route messages in a real blockchain network environment. Additionally, the model can detect Erebus attacks effectively. This study provides novelty to the existing Erebus attack detection by increasing the accuracy detection by 1.05%, the recall rate by 2.01%, and the F1-score by 2.43%.  相似文献   

12.
Traditional distributed denial of service (DDoS) detection methods need a lot of computing resource, and many of them which are based on single element have high missing rate and false alarm rate. In order to solve the problems, this paper proposes a DDoS attack information fusion method based on CNN for multi-element data. Firstly, according to the distribution, concentration and high traffic abruptness of DDoS attacks, this paper defines six features which are respectively obtained from the elements of source IP address, destination IP address, source port, destination port, packet size and the number of IP packets. Then, we propose feature weight calculation algorithm based on principal component analysis to measure the importance of different features in different network environment. The algorithm of weighted multi-element feature fusion proposed in this paper is used to fuse different features, and obtain multi-element fusion feature (MEFF) value. Finally, the DDoS attack information fusion classification model is established by using convolutional neural network and support vector machine respectively based on the MEFF time series. Experimental results show that the information fusion method proposed can effectively fuse multi-element data, reduce the missing rate and total error rate, memory resource consumption, running time, and improve the detection rate.  相似文献   

13.
The novel Software Defined Networking (SDN) architecture potentially resolves specific challenges arising from rapid internet growth of and the static nature of conventional networks to manage organizational business requirements with distinctive features. Nevertheless, such benefits lead to a more adverse environment entailing network breakdown, systems paralysis, and online banking fraudulence and robbery. As one of the most common and dangerous threats in SDN, probe attack occurs when the attacker scans SDN devices to collect the necessary knowledge on system susceptibilities, which is then manipulated to undermine the entire system. Precision, high performance, and real-time systems prove pivotal in successful goal attainment through feature selection to minimize computation time, optimize prediction performance, and provide a holistic understanding of machine learning data. As the extension of astute machine learning algorithms into an Intrusion Detection System (IDS) through SDN has garnered much scholarly attention within the past decade, this study recommended an effective IDS under the Grey-wolf optimizer (GWO) and Light Gradient Boosting Machine (LightGBM) classifier for probe attack identification. The InSDN dataset was employed to train and test the proposed IDS, which is deemed to be a novel benchmarking dataset in SDN. The proposed IDS assessment demonstrated an optimized performance against that of peer IDSs in probe attack detection within SDN. The results revealed that the proposed IDS outperforms the state-of-the-art IDSs, as it achieved 99.8% accuracy, 99.7% recall, 99.99% precision, and 99.8% F-measure.  相似文献   

14.
In recent years, the number of exposed vulnerabilities has grown rapidly and more and more attacks occurred to intrude on the target computers using these vulnerabilities such as different malware. Malware detection has attracted more attention and still faces severe challenges. As malware detection based traditional machine learning relies on exports’ experience to design efficient features to distinguish different malware, it causes bottleneck on feature engineer and is also time-consuming to find efficient features. Due to its promising ability in automatically proposing and selecting significant features, deep learning has gradually become a research hotspot. In this paper, aiming to detect the malicious payload and identify their categories with high accuracy, we proposed a packet-based malicious payload detection and identification algorithm based on object detection deep learning network. A dataset of malicious payload on code execution vulnerability has been constructed under the Metasploit framework and used to evaluate the performance of the proposed malware detection and identification algorithm. The experimental results demonstrated that the proposed object detection network can efficiently find and identify malicious payloads with high accuracy.  相似文献   

15.
Distributed denial of service (DDoS) attacks launch more and more frequently and are more destructive. Feature representation as an important part of DDoS defense technology directly affects the efficiency of defense. Most DDoS feature extraction methods cannot fully utilize the information of the original data, resulting in the extracted features losing useful features. In this paper, a DDoS feature representation method based on deep belief network (DBN) is proposed. We quantify the original data by the size of the network flows, the distribution of IP addresses and ports, and the diversity of packet sizes of different protocols and train the DBN in an unsupervised manner by these quantified values. Two feedforward neural networks (FFNN) are initialized by the trained deep belief network, and one of the feedforward neural networks continues to be trained in a supervised manner. The canonical correlation analysis (CCA) method is used to fuse the features extracted by two feedforward neural networks per layer. Experiments show that compared with other methods, the proposed method can extract better features.  相似文献   

16.
The number of botnet malware attacks on Internet devices has grown at an equivalent rate to the number of Internet devices that are connected to the Internet. Bot detection using machine learning (ML) with flow-based features has been extensively studied in the literature. Existing flow-based detection methods involve significant computational overhead that does not completely capture network communication patterns that might reveal other features of malicious hosts. Recently, Graph-Based Bot Detection methods using ML have gained attention to overcome these limitations, as graphs provide a real representation of network communications. The purpose of this study is to build a botnet malware detection system utilizing centrality measures for graph-based botnet detection and ML. We propose BotSward, a graph-based bot detection system that is based on ML. We apply the efficient centrality measures, which are Closeness Centrality (CC), Degree Centrality (CC), and PageRank (PR), and compare them with others used in the state-of-the-art. The efficiency of the proposed method is verified on the available Czech Technical University 13 dataset (CTU-13). The CTU-13 dataset contains 13 real botnet traffic scenarios that are connected to a command-and-control (C&C) channel and that cause malicious actions such as phishing, distributed denial-of-service (DDoS) attacks, spam attacks, etc. BotSward is robust to zero-day attacks, suitable for large-scale datasets, and is intended to produce better accuracy than state-of-the-art techniques. The proposed BotSward solution achieved 99% accuracy in botnet attack detection with a false positive rate as low as 0.0001%.  相似文献   

17.
The controller is indispensable in software-defined networking (SDN). With several features, controllers monitor the network and respond promptly to dynamic changes. Their performance affects the quality-of-service (QoS) in SDN. Every controller supports a set of features. However, the support of the features may be more prominent in one controller. Moreover, a single controller leads to performance, single-point-of-failure (SPOF), and scalability problems. To overcome this, a controller with an optimum feature set must be available for SDN. Furthermore, a cluster of optimum feature set controllers will overcome an SPOF and improve the QoS in SDN. Herein, leveraging an analytical network process (ANP), we rank SDN controllers regarding their supporting features and create a hierarchical control plane based cluster (HCPC) of the highly ranked controller computed using the ANP, evaluating their performance for the OS3E topology. The results demonstrated in Mininet reveal that a HCPC environment with an optimum controller achieves an improved QoS. Moreover, the experimental results validated in Mininet show that our proposed approach surpasses the existing distributed controller clustering (DCC) schemes in terms of several performance metrics i.e., delay, jitter, throughput, load balancing, scalability and CPU (central processing unit) utilization.  相似文献   

18.
The Internet of Things (IoT) has been deployed in diverse critical sectors with the aim of improving quality of service and facilitating human lives. The IoT revolution has redefined digital services in different domains by improving efficiency, productivity, and cost-effectiveness. Many service providers have adapted IoT systems or plan to integrate them as integral parts of their systems’ operation; however, IoT security issues remain a significant challenge. To minimize the risk of cyberattacks on IoT networks, anomaly detection based on machine learning can be an effective security solution to overcome a wide range of IoT cyberattacks. Although various detection techniques have been proposed in the literature, existing detection methods address limited cyberattacks and utilize outdated datasets for evaluations. In this paper, we propose an intelligent, effective, and lightweight detection approach to detect several IoT attacks. Our proposed model includes a collaborative feature selection method that selects the best distinctive features and eliminates unnecessary features to build an effective and efficient detection model. In the detection phase, we also proposed an ensemble of learning techniques to improve classification for predicting several different types of IoT attacks. The experimental results show that our proposed method can effectively and efficiently predict several IoT attacks with a higher accuracy rate of 99.984%, a precision rate of 99.982%, a recall rate of 99.984%, and an F1-score of 99.983%.  相似文献   

19.
An IDS (intrusion detection system) provides a foremost front line mechanism to guard networks, systems, data, and information. That’s why intrusion detection has grown as an active study area and provides significant contribution to cyber-security techniques. Multiple techniques have been in use but major concern in their implementation is variation in their detection performance. The performance of IDS lies in the accurate detection of attacks, and this accuracy can be raised by improving the recognition rate and significant reduction in the false alarms rate. To overcome this problem many researchers have used different machine learning techniques. These techniques have limitations and do not efficiently perform on huge and complex data about systems and networks. This work focused on ELM (Extreme Learning Machine) technique due to its good capabilities in classification problems and dealing with huge data. The ELM has different activation functions, but the problem is to find out which function is more suitable and performs well in IDS. This work investigates this problem. Here, Well-known activation functions like: sine, sigmoid and radial basis are explored, investigated and applied to measure their performance on the GA (Genetic Algorithm) features subset and with full features set. The NSL-KDD dataset is used as a benchmark. The empirical results are analyzed, addressed and compared among different activation functions of the ELM. The results show that the radial basis and sine functions perform better on GA feature set than the full feature set while the performance of the sigmoid function is almost equal on both features sets. So, the proposal of GA based feature selection reduced 21 features out of 41 that brought up to 98% accuracy and enhanced overall efficiency of extreme learning machine in intrusion detection.  相似文献   

20.
In Wireless Body Area Networks (WBANs) with respect to health care, sensors are positioned inside the body of an individual to transfer sensed data to a central station periodically. The great challenges posed to healthcare WBANs are the black hole and sink hole attacks. Data from deployed sensor nodes are attracted by sink hole or black hole nodes while grabbing the shortest path. Identifying this issue is quite a challenging task as a small variation in medicine intake may result in a severe illness. This work proposes a hybrid detection framework for attacks by applying a Proportional Coinciding Score (PCS) and an MK-Means algorithm, which is a well-known machine learning technique used to raise attack detection accuracy and decrease computational difficulties while giving treatments for heartache and respiratory issues. First, the gathered training data feature count is reduced through data pre-processing in the PCS. Second, the pre-processed features are sent to the MK-Means algorithm for training the data and promoting classification. Third, certain attack detection measures given by the intrusion detection system, such as the number of data packages trans-received, are identified by the MK-Means algorithm. This study demonstrates that the MK-Means framework yields a high detection accuracy with a low packet loss rate, low communication overhead, and reduced end-to-end delay in the network and improves the accuracy of biomedical data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号