共查询到20条相似文献,搜索用时 15 毫秒
1.
Anwer Mustafa Hilal Siwar Ben Haj Hassine Souad Larabi-Marie-Sainte Nadhem Nemri Mohamed K. Nour Abdelwahed Motwakel Abu Sarwar Zamani Mesfer Al Duhayyim 《计算机、材料和连续体(英文)》2022,72(1):713-726
The development in Information and Communication Technology has led to the evolution of new computing and communication environment. Technological revolution with Internet of Things (IoTs) has developed various applications in almost all domains from health care, education to entertainment with sensors and smart devices. One of the subsets of IoT is Internet of Medical things (IoMT) which connects medical devices, hardware and software applications through internet. IoMT enables secure wireless communication over the Internet to allow efficient analysis of medical data. With these smart advancements and exploitation of smart IoT devices in health care technology there increases threat and malware attacks during transmission of highly confidential medical data. This work proposes a scheme by integrating machine learning approach and block chain technology to detect malware during data transmission in IoMT. The proposed Machine Learning based Block Chain Technology malware detection scheme (MLBCT-Mdetect) is implemented in three steps namely: feature extraction, Classification and blockchain. Feature extraction is performed by calculating the weight of each feature and reduces the features with less weight. Support Vector Machine classifier is employed in the second step to classify the malware and benign nodes. Furthermore, third step uses blockchain to store details of the selected features which eventually improves the detection of malware with significant improvement in speed and accuracy. ML-BCT-Mdetect achieves higher accuracy with low false positive rate and higher True positive rate. 相似文献
2.
José Javier de Vicente Mohino Javier Bermejo Higuera Juan Ramón Bermejo Higuera Juan Antonio Sicilia Montalvo Manuel Sánchez Rubio José Javier Martínez Herraiz 《计算机、材料和连续体(英文)》2021,67(2):1447-1462
In a computer environment, an operating system is prone to malware, and even the Linux operating system is not an exception. In recent years, malware has evolved, and attackers have become more qualified compared to a few years ago. Furthermore, Linux-based systems have become more attractive to cybercriminals because of the increasing use of the Linux operating system in web servers and Internet of Things (IoT) devices. Windows is the most employed OS, so most of the research efforts have been focused on its malware protection rather than on other operating systems. As a result, hundreds of research articles, documents, and methodologies dedicated to malware analysis have been reported. However, there has not been much literature concerning Linux security and protection from malware. To address all these new challenges, it is necessary to develop a methodology that can standardize the required steps to perform the malware analysis in depth. A systematic analysis process makes the difference between good and ordinary malware analyses. Additionally, a deep malware comprehension can yield a faster and much more efficient malware eradication. In order to address all mentioned challenges, this article proposed a methodology for malware analysis in the Linux operating system, which is a traditionally overlooked field compared to the other operating systems. The proposed methodology is tested by a specific Linux malware, and the obtained test results have high effectiveness in malware detection. 相似文献
3.
As the amount of online video content is increasing, consumers are becoming increasingly interested in various product names appearing in videos, particularly in cosmetic-product names in videos related to fashion, beauty, and style. Thus, the identification of such products by using image recognition technology may aid in the identification of current commercial trends. In this paper, we propose a two-stage deep-learning detection and classification method for cosmetic products. Specifically, variants of the YOLO network are used for detection, where the bounding box for each given input product is predicted and subsequently cropped for classification. We use four state-of-the-art classification networks, namely ResNet, InceptionResNetV2, DenseNet, and EfficientNet, and compare their performance. Furthermore, we employ dilated convolution in these networks to obtain better feature representations and improve performance. Extensive experiments demonstrate that YOLOv3 and its tiny version achieve higher speed and accuracy. Moreover, the dilated networks marginally outperform the base models, or achieve similar performance in the worst case. We conclude that the proposed method can effectively detect and classify cosmetic products. 相似文献
4.
The Internet of Things (IoT) has been transformed almost all fields of life, but its impact on the healthcare sector has been notable. Various IoT-based sensors are used in the healthcare sector and offer quality and safe care to patients. This work presents a deep learning-based automated patient discomfort detection system in which patients’ discomfort is non-invasively detected. To do this, the overhead view patients’ data set has been recorded. For testing and evaluation purposes, we investigate the power of deep learning by choosing a Convolution Neural Network (CNN) based model. The model uses confidence maps and detects 18 different key points at various locations of the body of the patient. Applying association rules and part affinity fields, the detected key points are later converted into six main body organs. Furthermore, the distance of subsequent key points is measured using coordinates information. Finally, distance and the time-based threshold are used for the classification of movements associated with discomfort or normal conditions. The accuracy of the proposed system is assessed on various test sequences. The experimental outcomes reveal the worth of the proposed system’ by obtaining a True Positive Rate of 98% with a 2% False Positive Rate. 相似文献
5.
Although Android becomes a leading operating system in market, Android users suffer from security threats due to malwares. To protect users from the threats, the solutions to detect and identify the malware variant are essential. However, modern malware evades existing solutions by applying code obfuscation and native code. To resolve this problem, we introduce an ensemble-based malware classification algorithm using malware family grouping. The proposed family grouping algorithm finds the optimal combination of families belonging to the same group while the total number of families is fixed to the optimal total number. It also adopts unified feature extraction technique for handling seamless both bytecode and native code. We propose a unique feature selection algorithm that improves classification performance and time simultaneously. 2-gram based features are generated from the instructions and segments, and then selected by using multiple filters to choose most effective features. Through extensive simulation with many obfuscated and native code malware applications, we confirm that it can classify malwares with high accuracy and short processing time. Most existing approaches failed to achieve classification speed and detection time simultaneously. Therefore, the approach can help Android users to keep themselves safe from various and evolving cyber-attacks very effectively. 相似文献
6.
Fahad F. Alruwaili 《计算机、材料和连续体(英文)》2023,75(1):99-115
The Internet of Things (IoT) paradigm enables end users to access networking services amongst diverse kinds of electronic devices. IoT security mechanism is a technology that concentrates on safeguarding the devices and networks connected in the IoT environment. In recent years, False Data Injection Attacks (FDIAs) have gained considerable interest in the IoT environment. Cybercriminals compromise the devices connected to the network and inject the data. Such attacks on the IoT environment can result in a considerable loss and interrupt normal activities among the IoT network devices. The FDI attacks have been effectively overcome so far by conventional threat detection techniques. The current research article develops a Hybrid Deep Learning to Combat Sophisticated False Data Injection Attacks detection (HDL-FDIAD) for the IoT environment. The presented HDL-FDIAD model majorly recognizes the presence of FDI attacks in the IoT environment. The HDL-FDIAD model exploits the Equilibrium Optimizer-based Feature Selection (EO-FS) technique to select the optimal subset of the features. Moreover, the Long Short Term Memory with Recurrent Neural Network (LSTM-RNN) model is also utilized for the purpose of classification. At last, the Bayesian Optimization (BO) algorithm is employed as a hyperparameter optimizer in this study. To validate the enhanced performance of the HDL-FDIAD model, a wide range of simulations was conducted, and the results were investigated in detail. A comparative study was conducted between the proposed model and the existing models. The outcomes revealed that the proposed HDL-FDIAD model is superior to other models. 相似文献
7.
Mohammed Maray Hamed Alqahtani Saud S. Alotaibi Fatma S. Alrayes Nuha Alshuqayran Mrim M. Alnfiai Amal S. Mehanna Mesfer Al Duhayyim 《计算机、材料和连续体(英文)》2023,74(2):3101-3115
Cloud Computing (CC) is the most promising and advanced technology to store data and offer online services in an effective manner. When such fast evolving technologies are used in the protection of computer-based systems from cyberattacks, it brings several advantages compared to conventional data protection methods. Some of the computer-based systems that effectively protect the data include Cyber-Physical Systems (CPS), Internet of Things (IoT), mobile devices, desktop and laptop computer, and critical systems. Malicious software (malware) is nothing but a type of software that targets the computer-based systems so as to launch cyber-attacks and threaten the integrity, secrecy, and accessibility of the information. The current study focuses on design of Optimal Bottleneck driven Deep Belief Network-enabled Cybersecurity Malware Classification (OBDDBN-CMC) model. The presented OBDDBN-CMC model intends to recognize and classify the malware that exists in IoT-based cloud platform. To attain this, Z-score data normalization is utilized to scale the data into a uniform format. In addition, BDDBN model is also exploited for recognition and categorization of malware. To effectually fine-tune the hyperparameters related to BDDBN model, Grasshopper Optimization Algorithm (GOA) is applied. This scenario enhances the classification results and also shows the novelty of current study. The experimental analysis was conducted upon OBDDBN-CMC model for validation and the results confirmed the enhanced performance of OBDDBN-CMC model over recent approaches. 相似文献
8.
In recent years, the number of exposed vulnerabilities has grown rapidly and
more and more attacks occurred to intrude on the target computers using these
vulnerabilities such as different malware. Malware detection has attracted more attention
and still faces severe challenges. As malware detection based traditional machine
learning relies on exports’ experience to design efficient features to distinguish different
malware, it causes bottleneck on feature engineer and is also time-consuming to find
efficient features. Due to its promising ability in automatically proposing and selecting
significant features, deep learning has gradually become a research hotspot. In this paper,
aiming to detect the malicious payload and identify their categories with high accuracy,
we proposed a packet-based malicious payload detection and identification algorithm
based on object detection deep learning network. A dataset of malicious payload on code
execution vulnerability has been constructed under the Metasploit framework and used to
evaluate the performance of the proposed malware detection and identification algorithm.
The experimental results demonstrated that the proposed object detection network can
efficiently find and identify malicious payloads with high accuracy. 相似文献
9.
Mavra Mehmood Talha Javed Jamel Nebhen Sidra Abbas Rabia Abid Giridhar Reddy Bojja Muhammad Rizwan 《计算机、材料和连续体(英文)》2022,70(1):91-107
Due to the widespread use of the internet and smart devices, various attacks like intrusion, zero-day, Malware, and security breaches are a constant threat to any organization's network infrastructure. Thus, a Network Intrusion Detection System (NIDS) is required to detect attacks in network traffic. This paper proposes a new hybrid method for intrusion detection and attack categorization. The proposed approach comprises three steps to address high false and low false-negative rates for intrusion detection and attack categorization. In the first step, the dataset is preprocessed through the data transformation technique and min-max method. Secondly, the random forest recursive feature elimination method is applied to identify optimal features that positively impact the model's performance. Next, we use various Support Vector Machine (SVM) types to detect intrusion and the Adaptive Neuro-Fuzzy System (ANFIS) to categorize probe, U2R, R2U, and DDOS attacks. The validation of the proposed method is calculated through Fine Gaussian SVM (FGSVM), which is 99.3% for the binary class. Mean Square Error (MSE) is reported as 0.084964 for training data, 0.0855203 for testing, and 0.084964 to validate multiclass categorization. 相似文献
10.
Mohammed Altaf Ahmed Sara A Althubiti Dronamraju Nageswara Rao E. Laxmi Lydia Woong Cho Gyanendra Prasad Joshi Sung Won Kim 《计算机、材料和连续体(英文)》2022,73(3):4695-4711
Cyberattacks are developing gradually sophisticated, requiring effective intrusion detection systems (IDSs) for monitoring computer resources and creating reports on anomalous or suspicious actions. With the popularity of Internet of Things (IoT) technology, the security of IoT networks is developing a vital problem. Because of the huge number and varied kinds of IoT devices, it can be challenging task for protecting the IoT framework utilizing a typical IDS. The typical IDSs have their restrictions once executed to IoT networks because of resource constraints and complexity. Therefore, this paper presents a new Blockchain Assisted Intrusion Detection System using Differential Flower Pollination with Deep Learning (BAIDS-DFPDL) model in IoT Environment. The presented BAIDS-DFPDL model mainly focuses on the identification and classification of intrusions in the IoT environment. To accomplish this, the presented BAIDS-DFPDL model follows blockchain (BC) technology for effective and secure data transmission among the agents. Besides, the presented BAIDS-DFPDL model designs Differential Flower Pollination based feature selection (DFPFS) technique to elect features. Finally, sailfish optimization (SFO) with Restricted Boltzmann Machine (RBM) model is applied for effectual recognition of intrusions. The simulation results on benchmark dataset exhibit the enhanced performance of the BAIDS-DFPDL model over other models on the recognition of intrusions. 相似文献
11.
Phong Thanh Nguyen Vy Dang Bich Huynh Khoa Dang Vo Phuong Thanh Phan Mohamed Elhoseny Dac-Nhuong Le 《计算机、材料和连续体(英文)》2021,66(3):2555-2571
Data fusion is a multidisciplinary research area that involves different domains. It is used to attain minimum detection error probability and maximum reliability with the help of data retrieved from multiple healthcare sources. The generation of huge quantity of data from medical devices resulted in the formation of big data during which data fusion techniques become essential. Securing medical data is a crucial issue of exponentially-pacing computing world and can be achieved by Intrusion Detection Systems (IDS). In this regard, since singular-modality is not adequate to attain high detection rate, there is a need exists to merge diverse techniques using decision-based multimodal fusion process. In this view, this research article presents a new multimodal fusion-based IDS to secure the healthcare data using Spark. The proposed model involves decision-based fusion model which has different processes such as initialization, pre-processing, Feature Selection (FS) and multimodal classification for effective detection of intrusions. In FS process, a chaotic Butterfly Optimization (BO) algorithm called CBOA is introduced. Though the classic BO algorithm offers effective exploration, it fails in achieving faster convergence. In order to overcome this, i.e., to improve the convergence rate, this research work modifies the required parameters of BO algorithm using chaos theory. Finally, to detect intrusions, multimodal classifier is applied by incorporating three Deep Learning (DL)-based classification models. Besides, the concepts like Hadoop MapReduce and Spark were also utilized in this study to achieve faster computation of big data in parallel computation platform. To validate the outcome of the presented model, a series of experimentations was performed using the benchmark NSLKDDCup99 Dataset repository. The proposed model demonstrated its effective results on the applied dataset by offering the maximum accuracy of 99.21%, precision of 98.93% and detection rate of 99.59%. The results assured the betterment of the proposed model. 相似文献
12.
D. Venugopal T. Jayasankar Mohamed Yacin Sikkandar Mohamed Ibrahim Waly Irina V. Pustokhina Denis A. Pustokhin K. Shankar 《计算机、材料和连续体(英文)》2021,68(3):2877-2893
Data fusion is one of the challenging issues, the healthcare sector is facing in the recent years. Proper diagnosis from digital imagery and treatment are deemed to be the right solution. Intracerebral Haemorrhage (ICH), a condition characterized by injury of blood vessels in brain tissues, is one of the important reasons for stroke. Images generated by X-rays and Computed Tomography (CT) are widely used for estimating the size and location of hemorrhages. Radiologists use manual planimetry, a time-consuming process for segmenting CT scan images. Deep Learning (DL) is the most preferred method to increase the efficiency of diagnosing ICH. In this paper, the researcher presents a unique multi-modal data fusion-based feature extraction technique with Deep Learning (DL) model, abbreviated as FFE-DL for Intracranial Haemorrhage Detection and Classification, also known as FFEDL-ICH. The proposed FFEDL-ICH model has four stages namely, preprocessing, image segmentation, feature extraction, and classification. The input image is first preprocessed using the Gaussian Filtering (GF) technique to remove noise. Secondly, the Density-based Fuzzy C-Means (DFCM) algorithm is used to segment the images. Furthermore, the Fusion-based Feature Extraction model is implemented with handcrafted feature (Local Binary Patterns) and deep features (Residual Network-152) to extract useful features. Finally, Deep Neural Network (DNN) is implemented as a classification technique to differentiate multiple classes of ICH. The researchers, in the current study, used benchmark Intracranial Haemorrhage dataset and simulated the FFEDL-ICH model to assess its diagnostic performance. The findings of the study revealed that the proposed FFEDL-ICH model has the ability to outperform existing models as there is a significant improvement in its performance. For future researches, the researcher recommends the performance improvement of FFEDL-ICH model using learning rate scheduling techniques for DNN. 相似文献
13.
Real-time detection of Covid-19 has definitely been the most widely-used world-wide classification problem since the start of the pandemic from 2020 until now. In the meantime, airspace opacities spreads related to lung have been of the most challenging problems in this area. A common approach to do on that score has been using chest X-ray images to better diagnose positive Covid-19 cases. Similar to most other classification problems, machine learning-based approaches have been the first/most-used candidates in this application. Many schemes based on machine/deep learning have been proposed in recent years though increasing the performance and accuracy of the system has still remained an open issue. In this paper, we develop a novel deep learning architecture to better classify the Covid-19 X-ray images. To do so, we first propose a novel multi-habitat migration artificial bee colony (MHMABC) algorithm to improve the exploitation/exploration of artificial bee colony (ABC) algorithm. After that, we optimally train the fully connected by using the proposed MHMABC algorithm to obtain better accuracy and convergence rate while reducing the execution cost. Our experiment results on Covid-19 X-ray image dataset show that the proposed deep architecture has a great performance in different important optimization parameters. Furthermore, it will be shown that the MHMABC algorithm outperforms the state-of-the-art algorithms by evaluating its performance using some well-known benchmark datasets. 相似文献
14.
Amani Abdulrahman Albraikan Nadhem NEMRI Mimouna Abdullah Alkhonaini Anwer Mustafa Hilal Ishfaq Yaseen Abdelwahed Motwakel 《计算机、材料和连续体(英文)》2023,74(2):2443-2459
Melanoma remains a serious illness which is a common form of skin cancer. Since the earlier detection of melanoma reduces the mortality rate, it is essential to design reliable and automated disease diagnosis model using dermoscopic images. The recent advances in deep learning (DL) models find useful to examine the medical image and make proper decisions. In this study, an automated deep learning based melanoma detection and classification (ADL-MDC) model is presented. The goal of the ADL-MDC technique is to examine the dermoscopic images to determine the existence of melanoma. The ADL-MDC technique performs contrast enhancement and data augmentation at the initial stage. Besides, the k-means clustering technique is applied for the image segmentation process. In addition, Adagrad optimizer based Capsule Network (CapsNet) model is derived for effective feature extraction process. Lastly, crow search optimization (CSO) algorithm with sparse autoencoder (SAE) model is utilized for the melanoma classification process. The exploitation of the Adagrad and CSO algorithm helps to properly accomplish improved performance. A wide range of simulation analyses is carried out on benchmark datasets and the results are inspected under several aspects. The simulation results reported the enhanced performance of the ADL-MDC technique over the recent approaches. 相似文献
15.
V. Praveena A. Vijayaraj P. Chinnasamy Ihsan Ali Roobaea Alroobaea Saleh Yahya Alyahyan Muhammad Ahsan Raza 《计算机、材料和连续体(英文)》2022,70(2):2639-2653
In recent years, progressive developments have been observed in recent technologies and the production cost has been continuously decreasing. In such scenario, Internet of Things (IoT) network which is comprised of a set of Unmanned Aerial Vehicles (UAV), has received more attention from civilian to military applications. But network security poses a serious challenge to UAV networks whereas the intrusion detection system (IDS) is found to be an effective process to secure the UAV networks. Classical IDSs are not adequate to handle the latest computer networks that possess maximum bandwidth and data traffic. In order to improve the detection performance and reduce the false alarms generated by IDS, several researchers have employed Machine Learning (ML) and Deep Learning (DL) algorithms to address the intrusion detection problem. In this view, the current research article presents a deep reinforcement learning technique, optimized by Black Widow Optimization (DRL-BWO) algorithm, for UAV networks. In addition, DRL involves an improved reinforcement learning-based Deep Belief Network (DBN) for intrusion detection. For parameter optimization of DRL technique, BWO algorithm is applied. It helps in improving the intrusion detection performance of UAV networks. An extensive set of experimental analysis was performed to highlight the supremacy of the proposed model. From the simulation values, it is evident that the proposed method is appropriate as it attained high precision, recall, F-measure, and accuracy values such as 0.985, 0.993, 0.988, and 0.989 respectively. 相似文献
16.
目的 现有的易拉罐缺陷检测系统在高速生产线中存在错检率和漏检率高,检测精度相对较低等问题,为了提高易拉罐缺陷识别的准确性,使易拉罐生产线实现进一步自动化、智能化,基于深度学习技术和迁移学习技术,提出一种适用于易拉罐制造的在线检测的算法。方法 利用深度卷积网络提取易拉罐缺陷特征,通过优化卷积核,减短易拉罐缺陷检测的时间。针对国内外数据集缺乏食品包装制造的缺陷图像,构建易拉罐缺陷数据集,结合预训练网络,通过调整VGG16提升对易拉罐缺陷的识别准确率。结果 对易拉罐数据集在卷积神经网络、迁移学习和调整后的预训练网络进行了易拉罐缺陷检测的性能对比,验证了基于深度学习的易拉罐缺陷检测技术在学习率为0.0005,训练10个迭代后可达到较好的识别效果,最终二分类缺陷识别率为99.7%,算法耗时119 ms。结论 相较于现有的易拉罐检测算法,文中提出的基于深度学习的易拉罐检测算法的识别性能更优,智能化程度更高。同时,该研究有助于制罐企业利用深度学习等AI技术促进智能化生产,减少人力成本,符合国家制造业产业升级的策略,具有一定的实际意义。 相似文献
17.
目的 针对人工分拣组成的零件包装盒常常会出现缺少部分零件的问题,开发一套集训练、识别、分选于一体的智能分拣系统.方法 在设计过程中,提出一种基于深度学习的改进Yolov3算法,针对工业现场光照、业零件形状和质地等实际因素,对Yolo算法的训练和检测进行改进,通过对包装盒产品的一次拍摄,检测出画面中出现的预设物体,并与标准设置相比对,从而判断出该盒内产品是否有缺料、多料的情况,以此分选出合格与否的包装盒.结果 在物体摆放相互重叠不超过20%的情况下,物体检测的准确率为98.2%,召回率为99.5%.结论 通过文中提出的改进算法,设计的检测系统能够在复杂的工业现场环境下正常工作,并能对包装的完整性进行准确的检测. 相似文献
18.
Asif Mehmood Muhammad Attique Khan Usman Tariq Chang-Won Jeong Yunyoung Nam Reham R. Mostafa Amira ElZeiny 《计算机、材料和连续体(英文)》2022,70(1):343-361
Background—Human Gait Recognition (HGR) is an approach based on biometric and is being widely used for surveillance. HGR is adopted by researchers for the past several decades. Several factors are there that affect the system performance such as the walking variation due to clothes, a person carrying some luggage, variations in the view angle. Proposed—In this work, a new method is introduced to overcome different problems of HGR. A hybrid method is proposed or efficient HGR using deep learning and selection of best features. Four major steps are involved in this work-preprocessing of the video frames, manipulation of the pre-trained CNN model VGG-16 for the computation of the features, removing redundant features extracted from the CNN model, and classification. In the reduction of irrelevant features Principal Score and Kurtosis based approach is proposed named PSbK. After that, the features of PSbK are fused in one materix. Finally, this fused vector is fed to the One against All Multi Support Vector Machine (OAMSVM) classifier for the final results. Results—The system is evaluated by utilizing the CASIA B database and six angles 00°, 18°, 36°, 54°, 72°, and 90° are used and attained the accuracy of 95.80%, 96.0%, 95.90%, 96.20%, 95.60%, and 95.50%, respectively. Conclusion—The comparison with recent methods show the proposed method work better. 相似文献
19.
Magdy M. Fadel Sally M. El-Ghamrawy Amr M. T. Ali-Eldin Mohammed K. Hassan Ali I. El-Desoky 《计算机、材料和连续体(英文)》2022,73(2):2293-2312
Distributed denial-of-service (DDoS) attacks are designed to interrupt network services such as email servers and webpages in traditional computer networks. Furthermore, the enormous number of connected devices makes it difficult to operate such a network effectively. Software defined networks (SDN) are networks that are managed through a centralized control system, according to researchers. This controller is the brain of any SDN, composing the forwarding table of all data plane network switches. Despite the advantages of SDN controllers, DDoS attacks are easier to perpetrate than on traditional networks. Because the controller is a single point of failure, if it fails, the entire network will fail. This paper offers a Hybrid Deep Learning Intrusion Detection and Prevention (HDLIDP) framework, which blends signature-based and deep learning neural networks to detect and prevent intrusions. This framework improves detection accuracy while addressing all of the aforementioned problems. To validate the framework, experiments are done on both traditional and SDN datasets; the findings demonstrate a significant improvement in classification accuracy. 相似文献
20.
In the era of Big data, learning discriminant feature representation from network traffic is identified has as an invariably essential task for improving the detection ability of an intrusion detection system (IDS). Owing to the lack of accurately labeled network traffic data, many unsupervised feature representation learning models have been proposed with state-of-the-art performance. Yet, these models fail to consider the classification error while learning the feature representation. Intuitively, the learnt feature representation may degrade the performance of the classification task. For the first time in the field of intrusion detection, this paper proposes an unsupervised IDS model leveraging the benefits of deep autoencoder (DAE) for learning the robust feature representation and one-class support vector machine (OCSVM) for finding the more compact decision hyperplane for intrusion detection. Specially, the proposed model defines a new unified objective function to minimize the reconstruction and classification error simultaneously. This unique contribution not only enables the model to support joint learning for feature representation and classifier training but also guides to learn the robust feature representation which can improve the discrimination ability of the classifier for intrusion detection. Three set of evaluation experiments are conducted to demonstrate the potential of the proposed model. First, the ablation evaluation on benchmark dataset, NSL-KDD validates the design decision of the proposed model. Next, the performance evaluation on recent intrusion dataset, UNSW-NB15 signifies the stable performance of the proposed model. Finally, the comparative evaluation verifies the efficacy of the proposed model against recently published state-of-the-art methods. 相似文献