首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Race classification is a long-standing challenge in the field of face image analysis. The investigation of salient facial features is an important task to avoid processing all face parts. Face segmentation strongly benefits several face analysis tasks, including ethnicity and race classification. We propose a race-classification algorithm using a prior face segmentation framework. A deep convolutional neural network (DCNN) was used to construct a face segmentation model. For training the DCNN, we label face images according to seven different classes, that is, nose, skin, hair, eyes, brows, back, and mouth. The DCNN model developed in the first phase was used to create segmentation results. The probabilistic classification method is used, and probability maps (PMs) are created for each semantic class. We investigated five salient facial features from among seven that help in race classification. Features are extracted from the PMs of five classes, and a new model is trained based on the DCNN. We assessed the performance of the proposed race classification method on four standard face datasets, reporting superior results compared with previous studies.  相似文献   

2.
Many approaches have been tried for the classification of arrhythmia. Due to the dynamic nature of electrocardiogram (ECG) signals, it is challenging to use traditional handcrafted techniques, making a machine learning (ML) implementation attractive. Competent monitoring of cardiac arrhythmia patients can save lives. Cardiac arrhythmia prediction and classification has improved significantly during the last few years. Arrhythmias are a group of conditions in which the electrical activity of the heart is abnormal, either faster or slower than normal. It is the most frequent cause of death for both men and women every year in the world. This paper presents a deep learning (DL) technique for the classification of arrhythmias. The proposed technique makes use of the University of California, Irvine (UCI) repository, which consists of a high-dimensional cardiac arrhythmia dataset of 279 attributes. In this research, our goal was to classify cardiac arrhythmia patients into 16 classes depending on the characteristics of the electrocardiography dataset. The DL approach in the form of long short-term memory (LSTM) is an efficient technique to deal with reduced accuracy due to vanishing and exploding gradients in traditional DL frameworks for big data analysis. The goal of this research was to categorize cardiac arrhythmia patients by developing an efficient intelligent system using the LSTM DL algorithm. This approach to arrhythmia classification includes classification algorithms along with noise removal techniques. Therefore, we utilized principal components analysis (PCA) for noise removal, and LSTM for classification. This hybrid comprehensive arrhythmia classification approach performs better than previous approaches to arrhythmia classification. We attained a highest classification accuracy of 93.5% with the DL based disease classification system, and outperformed the earlier approaches used for cardiac arrhythmia classification.  相似文献   

3.
The sewer system plays an important role in protecting rainfall and treating urban wastewater. Due to the harsh internal environment and complex structure of the sewer, it is difficult to monitor the sewer system. Researchers are developing different methods, such as the Internet of Things and Artificial Intelligence, to monitor and detect the faults in the sewer system. Deep learning is a promising artificial intelligence technology that can effectively identify and classify different sewer system defects. However, the existing deep learning based solution does not provide high accuracy prediction and the defect class considered for classification is very small, which can affect the robustness of the model in the constraint environment. As a result, this paper proposes a sewer condition monitoring framework based on deep learning, which can effectively detect and evaluate defects in sewer pipelines with high accuracy. We also introduce a large dataset of sewer defects with 20 different defect classes found in the sewer pipeline. This study modified the original RegNet model by modifying the squeeze excitation (SE) block and adding the dropout layer and Leaky Rectified Linear Units (LeakyReLU) activation function in the Block structure of RegNet model. This study explored different deep learning methods such as RegNet, ResNet50, very deep convolutional networks (VGG), and GoogleNet to train on the sewer defect dataset. The experimental results indicate that the proposed system framework based on the modified-RegNet (RegNet+) model achieves the highest accuracy of 99.5 compared with the commonly used deep learning models. The proposed model provides a robust deep learning model that can effectively classify 20 different sewer defects and be utilized in real-world sewer condition monitoring applications.  相似文献   

4.
Attacks on websites and network servers are among the most critical threats in network security. Network behavior identification is one of the most effective ways to identify malicious network intrusions. Analyzing abnormal network traffic patterns and traffic classification based on labeled network traffic data are among the most effective approaches for network behavior identification. Traditional methods for network traffic classification utilize algorithms such as Naive Bayes, Decision Tree and XGBoost. However, network traffic classification, which is required for network behavior identification, generally suffers from the problem of low accuracy even with the recently proposed deep learning models. To improve network traffic classification accuracy thus improving network intrusion detection rate, this paper proposes a new network traffic classification model, called ArcMargin, which incorporates metric learning into a convolutional neural network (CNN) to make the CNN model more discriminative. ArcMargin maps network traffic samples from the same category more closely while samples from different categories are mapped as far apart as possible. The metric learning regularization feature is called additive angular margin loss, and it is embedded in the object function of traditional CNN models. The proposed ArcMargin model is validated with three datasets and is compared with several other related algorithms. According to a set of classification indicators, the ArcMargin model is proofed to have better performances in both network traffic classification tasks and open-set tasks. Moreover, in open-set tasks, the ArcMargin model can cluster unknown data classes that do not exist in the previous training dataset.  相似文献   

5.
Diabetic retinopathy (DR) is a disease with an increasing prevalence and the major reason for blindness among working-age population. The possibility of severe vision loss can be extensively reduced by timely diagnosis and treatment. An automated screening for DR has been identified as an effective method for early DR detection, which can decrease the workload associated to manual grading as well as save diagnosis costs and time. Several studies have been carried out to develop automated detection and classification models for DR. This paper presents a new IoT and cloud-based deep learning for healthcare diagnosis of Diabetic Retinopathy (DR). The proposed model incorporates different processes namely data collection, preprocessing, segmentation, feature extraction and classification. At first, the IoT-based data collection process takes place where the patient wears a head mounted camera to capture the retinal fundus image and send to cloud server. Then, the contrast level of the input DR image gets increased in the preprocessing stage using Contrast Limited Adaptive Histogram Equalization (CLAHE) model. Next, the preprocessed image is segmented using Adaptive Spatial Kernel distance measure-based Fuzzy C-Means clustering (ASKFCM) model. Afterwards, deep Convolution Neural Network (CNN) based Inception v4 model is applied as a feature extractor and the resulting feature vectors undergo classification in line with the Gaussian Naive Bayes (GNB) model. The proposed model was tested using a benchmark DR MESSIDOR image dataset and the obtained results showcased superior performance of the proposed model over other such models compared in the study.  相似文献   

6.
When utilizing the deep learning models in some real applications, the distribution of the labels in the environment can be used to increase the accuracy. Generally, to compute this distribution, there should be the validation set that is labeled by the ground truths. On the other side, the dependency of ground truths limits the utilization of the distribution in various environments. In this paper, we carried out a novel system for the deep learning-based classification to solve this problem. Firstly, our system only uses one validation set with ground truths to compute some hyper parameters, which is named as one-shot guidance. Secondly, in an environment, our system builds the validation set and labels this by the prediction results, which does not need any guidance by the ground truths. Thirdly, the computed distribution of labels by the validation set selectively cooperates with the probability of labels by the output of models, which is to increase the accuracy of predict results on testing samples. We selected six popular deep learning models on three real datasets for the evaluation. The experimental results show that our system can achieve higher accuracy than state-of-art methods while reducing the dependency of labeled validation set.  相似文献   

7.
A new paradigm of VANET has emerged in recent years: Internet of Vehicles (IoV). These networks are formed on the roads and streets between travellers who have relationships, interactions and common social interests. Users of these networks exchange information of common interest, for example, traffic jams and dangers on the way. They can also exchange files such as multimedia files. IoV is considered as part of the Internet of Things (IoT) where objects are vehicles, which can create a multitude of services dedicated to the intelligent transportation system. The interest is to permit to all connected vehicles to communicate with each other and/or with a central server, through other vehicles. Vehicle to Vehicle (V2V) communication is the main component, because the services encompassed in the IoV are based on the vehicles in question, such as transmitter, relay and receiver. This work is focusing on designing and developing a Quality of Service (QoS) routing scheme dedicated to IoV networks. Especially, we aim to improve the Greedy Traffic Aware Routing (GyTAR) protocol to support QoS in IoV networks. To evaluate the proposed approach in terms of QoS in the context of IoV networks, the performance metrics such as average end-to-end delay and packet delivery ratio are taken into consideration to analyse the network situation.  相似文献   

8.
Medical Resonance Imaging (MRI) is a noninvasive, nonradioactive, and meticulous diagnostic modality capability in the field of medical imaging. However, the efficiency of MR image reconstruction is affected by its bulky image sets and slow process implementation. Therefore, to obtain a high-quality reconstructed image we presented a sparse aware noise removal technique that uses convolution neural network (SANR_CNN) for eliminating noise and improving the MR image reconstruction quality. The proposed noise removal or denoising technique adopts a fast CNN architecture that aids in training larger datasets with improved quality, and SARN algorithm is used for building a dictionary learning technique for denoising large image datasets. The proposed SANR_CNN model also preserves the details and edges in the image during reconstruction. An experiment was conducted to analyze the performance of SANR_CNN in a few existing models in regard with peak signal-to-noise ratio (PSNR), structural similarity index (SSIM), and mean squared error (MSE). The proposed SANR_CNN model achieved higher PSNR, SSIM, and MSE efficiency than the other noise removal techniques. The proposed architecture also provides transmission of these denoised medical images through secured IoT architecture.  相似文献   

9.
Malicious traffic detection over the internet is one of the challenging areas for researchers to protect network infrastructures from any malicious activity. Several shortcomings of a network system can be leveraged by an attacker to get unauthorized access through malicious traffic. Safeguard from such attacks requires an efficient automatic system that can detect malicious traffic timely and avoid system damage. Currently, many automated systems can detect malicious activity, however, the efficacy and accuracy need further improvement to detect malicious traffic from multi-domain systems. The present study focuses on the detection of malicious traffic with high accuracy using machine learning techniques. The proposed approach used two datasets UNSW-NB15 and IoTID20 which contain the data for IoT-based traffic and local network traffic, respectively. Both datasets were combined to increase the capability of the proposed approach in detecting malicious traffic from local and IoT networks, with high accuracy. Horizontally merging both datasets requires an equal number of features which was achieved by reducing feature count to 30 for each dataset by leveraging principal component analysis (PCA). The proposed model incorporates stacked ensemble model extra boosting forest (EBF) which is a combination of tree-based models such as extra tree classifier, gradient boosting classifier, and random forest using a stacked ensemble approach. Empirical results show that EBF performed significantly better and achieved the highest accuracy score of 0.985 and 0.984 on the multi-domain dataset for two and four classes, respectively.  相似文献   

10.
In recent times, Internet of Things (IoT) and Cloud Computing (CC) paradigms are commonly employed in different healthcare applications. IoT gadgets generate huge volumes of patient data in healthcare domain, which can be examined on cloud over the available storage and computation resources in mobile gadgets. Chronic Kidney Disease (CKD) is one of the deadliest diseases that has high mortality rate across the globe. The current research work presents a novel IoT and cloud-based CKD diagnosis model called Flower Pollination Algorithm (FPA)-based Deep Neural Network (DNN) model abbreviated as FPA-DNN. The steps involved in the presented FPA-DNN model are data collection, preprocessing, Feature Selection (FS), and classification. Primarily, the IoT gadgets are utilized in the collection of a patient’s health information. The proposed FPA-DNN model deploys Oppositional Crow Search (OCS) algorithm for FS, which selects the optimal subset of features from the preprocessed data. The application of FPA helps in tuning the DNN parameters for better classification performance. The simulation analysis of the proposed FPA-DNN model was performed against the benchmark CKD dataset. The results were examined under different aspects. The simulation outcomes established the superior performance of FPA-DNN technique by achieving the highest sensitivity of 98.80%, specificity of 98.66%, accuracy of 98.75%, F-score of 99%, and kappa of 97.33%.  相似文献   

11.
12.
Indian agriculture is striving to achieve sustainable intensification, the system aiming to increase agricultural yield per unit area without harming natural resources and the ecosystem. Modern farming employs technology to improve productivity. Early and accurate analysis and diagnosis of plant disease is very helpful in reducing plant diseases and improving plant health and food crop productivity. Plant disease experts are not available in remote areas thus there is a requirement of automatic low-cost, approachable and reliable solutions to identify the plant diseases without the laboratory inspection and expert's opinion. Deep learning-based computer vision techniques like Convolutional Neural Network (CNN) and traditional machine learning-based image classification approaches are being applied to identify plant diseases. In this paper, the CNN model is proposed for the classification of rice and potato plant leaf diseases. Rice leaves are diagnosed with bacterial blight, blast, brown spot and tungro diseases. Potato leaf images are classified into three classes: healthy leaves, early blight and late blight diseases. Rice leaf dataset with 5932 images and 1500 potato leaf images are used in the study. The proposed CNN model was able to learn hidden patterns from the raw images and classify rice images with 99.58% accuracy and potato leaves with 97.66% accuracy. The results demonstrate that the proposed CNN model performed better when compared with other machine learning image classifiers such as Support Vector Machine (SVM), K-Nearest Neighbors (KNN), Decision Tree and Random Forest.  相似文献   

13.
Tomato production is affected by various threats, including pests, pathogens, and nutritional deficiencies during its growth process. If control is not timely, these threats affect the plant-growth, fruit-yield, or even loss of the entire crop, which is a key danger to farmers’ livelihood and food security. Traditional plant disease diagnosis methods heavily rely on plant pathologists that incur high processing time and huge cost. Rapid and cost-effective methods are essential for timely detection and early intervention of basic food threats to ensure food security and reduce substantial economic loss. Recent developments in Artificial Intelligence (AI) and computer vision allow researchers to develop image-based automatic diagnostic tools to quickly and accurately detect diseases. In this work, we proposed an AI-based approach to detect diseases in tomato plants. Our goal is to develop an end-to-end system to diagnose essential crop problems in real-time, ensuring high accuracy. This paper employs various deep learning models to recognize and predict different diseases caused by pathogens, pests, and nutritional deficiencies. Various Convolutional Neural Networks (CNNs) are trained on a large dataset of leaves and fruits images of tomato plants. We compared the performance of ShallowNet (a shallow network trained from scratch) and the state-of-the-art deep learning network (models are fine-tuned via transfer learning). In our experiments, DenseNet consistently achieved high performance with an accuracy score of 95.31% on the test dataset. The results verify that deep learning models with the least number of parameters, reasonable complexity, and appropriate depth achieve the best performance. All experiments are implemented in Python, utilizing the Keras deep learning library backend with TensorFlow.  相似文献   

14.
Deep learning (DL) techniques, which do not need complex pre-processing and feature analysis, are used in many areas of medicine and achieve promising results. On the other hand, in medical studies, a limited dataset decreases the abstraction ability of the DL model. In this context, we aimed to produce synthetic brain images including three tumor types (glioma, meningioma, and pituitary), unlike traditional data augmentation methods, and classify them with DL. This study proposes a tumor classification model consisting of a Dense Convolutional Network (DenseNet121)-based DL model to prevent forgetting problems in deep networks and delay information flow between layers. By comparing models trained on two different datasets, we demonstrated the effect of synthetic images generated by Cycle Generative Adversarial Network (CycleGAN) on the generalization of DL. One model is trained only on the original dataset, while the other is trained on the combined dataset of synthetic and original images. Synthetic data generated by CycleGAN improved the best accuracy values for glioma, meningioma, and pituitary tumor classes from 0.9633, 0.9569, and 0.9904 to 0.9968, 0.9920, and 0.9952, respectively. The developed model using synthetic data obtained a higher accuracy value than the related studies in the literature. Additionally, except for pixel-level and affine transform data augmentation, synthetic data has been generated in the figshare brain dataset for the first time.  相似文献   

15.
16.
The Internet of Things (IoT) technology has been developed for directing and maintaining the atmosphere in smart buildings in real time. In order to optimise the power generation sector and schedule routine maintenance, it is crucial to predict future energy demand. Electricity demand forecasting is difficult because of the complexity of the available demand patterns. Establishing a perfect prediction of energy consumption at the building’s level is vital and significant to efficiently managing the consumed energy by utilising a strong predictive model. Low forecast accuracy is just one of the reasons why energy consumption and prediction models have failed to advance. Therefore, the purpose of this study is to create an IoT-based energy prediction (IoT-EP) model that can reliably estimate the energy consumption of smart buildings. A real-world test case on power predictions is conducted on a local electricity grid to test the practicality of the approach. The proposed (IoT-EP) model selects the significant features as input neurons, the predictable data is selected as output nodes, and a multi-layer perceptron is constructed along with the features of the Convolution Neural Network (CNN) algorithm. The analysis of the proposed IoT-EP model has higher accuracy of 90%, correlation of 89%, and variance of 16% in less training time of 29.2 s, and with a higher prediction speed of 396 (observation/sec). When compared to existing models, the results showed that the proposed (IoT-EP) model outperforms with a satisfactory level of accuracy in predicting energy consumption in smart buildings.  相似文献   

17.
As the amount of online video content is increasing, consumers are becoming increasingly interested in various product names appearing in videos, particularly in cosmetic-product names in videos related to fashion, beauty, and style. Thus, the identification of such products by using image recognition technology may aid in the identification of current commercial trends. In this paper, we propose a two-stage deep-learning detection and classification method for cosmetic products. Specifically, variants of the YOLO network are used for detection, where the bounding box for each given input product is predicted and subsequently cropped for classification. We use four state-of-the-art classification networks, namely ResNet, InceptionResNetV2, DenseNet, and EfficientNet, and compare their performance. Furthermore, we employ dilated convolution in these networks to obtain better feature representations and improve performance. Extensive experiments demonstrate that YOLOv3 and its tiny version achieve higher speed and accuracy. Moreover, the dilated networks marginally outperform the base models, or achieve similar performance in the worst case. We conclude that the proposed method can effectively detect and classify cosmetic products.  相似文献   

18.
Background: In medical image analysis, the diagnosis of skin lesions remains a challenging task. Skin lesion is a common type of skin cancer that exists worldwide. Dermoscopy is one of the latest technologies used for the diagnosis of skin cancer. Challenges: Many computerized methods have been introduced in the literature to classify skin cancers. However, challenges remain such as imbalanced datasets, low contrast lesions, and the extraction of irrelevant or redundant features. Proposed Work: In this study, a new technique is proposed based on the conventional and deep learning framework. The proposed framework consists of two major tasks: lesion segmentation and classification. In the lesion segmentation task, contrast is initially improved by the fusion of two filtering techniques and then performed a color transformation to color lesion area color discrimination. Subsequently, the best channel is selected and the lesion map is computed, which is further converted into a binary form using a thresholding function. In the lesion classification task, two pre-trained CNN models were modified and trained using transfer learning. Deep features were extracted from both models and fused using canonical correlation analysis. During the fusion process, a few redundant features were also added, lowering classification accuracy. A new technique called maximum entropy score-based selection (MESbS) is proposed as a solution to this issue. The features selected through this approach are fed into a cubic support vector machine (C-SVM) for the final classification. Results: The experimental process was conducted on two datasets: ISIC 2017 and HAM10000. The ISIC 2017 dataset was used for the lesion segmentation task, whereas the HAM10000 dataset was used for the classification task. The achieved accuracy for both datasets was 95.6% and 96.7%, respectively, which was higher than the existing techniques.  相似文献   

19.
The text classification process has been extensively investigated in various languages, especially English. Text classification models are vital in several Natural Language Processing (NLP) applications. The Arabic language has a lot of significance. For instance, it is the fourth mostly-used language on the internet and the sixth official language of the United Nations. However, there are few studies on the text classification process in Arabic. A few text classification studies have been published earlier in the Arabic language. In general, researchers face two challenges in the Arabic text classification process: low accuracy and high dimensionality of the features. In this study, an Automated Arabic Text Classification using Hyperparameter Tuned Hybrid Deep Learning (AATC-HTHDL) model is proposed. The major goal of the proposed AATC-HTHDL method is to identify different class labels for the Arabic text. The first step in the proposed model is to pre-process the input data to transform it into a useful format. The Term Frequency-Inverse Document Frequency (TF-IDF) model is applied to extract the feature vectors. Next, the Convolutional Neural Network with Recurrent Neural Network (CRNN) model is utilized to classify the Arabic text. In the final stage, the Crow Search Algorithm (CSA) is applied to fine-tune the CRNN model’s hyperparameters, showing the work’s novelty. The proposed AATC-HTHDL model was experimentally validated under different parameters and the outcomes established the supremacy of the proposed AATC-HTHDL model over other approaches.  相似文献   

20.
For military warfare purposes, it is necessary to identify the type of a certain weapon through video stream tracking based on infrared (IR) video frames. Computer vision is a visual search trend that is used to identify objects in images or video frames. For military applications, drones take a main role in surveillance tasks, but they cannot be confident for long-time missions. So, there is a need for such a system, which provides a continuous surveillance task to support the drone mission. Such a system can be called a Hybrid Surveillance System (HSS). This system is based on a distributed network of wireless sensors for continuous surveillance. In addition, it includes one or more drones to make short-time missions, if the sensors detect a suspicious event. This paper presents a digital solution to identify certain types of concealed weapons in surveillance applications based on Convolutional Neural Networks (CNNs) and Convolutional Long Short-Term Memory (ConvLSTM). Based on initial results, the importance of video frame enhancement is obvious to improve the visibility of objects in video streams. The accuracy of the proposed methods reach 99%, which reflects the effectiveness of the presented solution. In addition, the experimental results prove that the proposed methods provide superior performance compared to traditional ones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号