首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Coronavirus (COVID-19) infection was initially acknowledged as a global pandemic in Wuhan in China. World Health Organization (WHO) stated that the COVID-19 is an epidemic that causes a 3.4% death rate. Chest X-Ray (CXR) and Computerized Tomography (CT) screening of infected persons are essential in diagnosis applications. There are numerous ways to identify positive COVID-19 cases. One of the fundamental ways is radiology imaging through CXR, or CT images. The comparison of CT and CXR scans revealed that CT scans are more effective in the diagnosis process due to their high quality. Hence, automated classification techniques are required to facilitate the diagnosis process. Deep Learning (DL) is an effective tool that can be utilized for detection and classification this type of medical images. The deep Convolutional Neural Networks (CNNs) can learn and extract essential features from different medical image datasets. In this paper, a CNN architecture for automated COVID-19 detection from CXR and CT images is offered. Three activation functions as well as three optimizers are tested and compared for this task. The proposed architecture is built from scratch and the COVID-19 image datasets are directly fed to train it. The performance is tested and investigated on the CT and CXR datasets. Three activation functions: Tanh, Sigmoid, and ReLU are compared using a constant learning rate and different batch sizes. Different optimizers are studied with different batch sizes and a constant learning rate. Finally, a comparison between different combinations of activation functions and optimizers is presented, and the optimal configuration is determined. Hence, the main objective is to improve the detection accuracy of COVID-19 from CXR and CT images using DL by employing CNNs to classify medical COVID-19 images in an early stage. The proposed model achieves a classification accuracy of 91.67% on CXR image dataset, and a classification accuracy of 100% on CT dataset with training times of 58 min and 46 min on CXR and CT datasets, respectively. The best results are obtained using the ReLU activation function combined with the SGDM optimizer at a learning rate of 10−5 and a minibatch size of 16.  相似文献   

2.
The purpose of this research is the segmentation of lungs computed tomography (CT) scan for the diagnosis of COVID-19 by using machine learning methods. Our dataset contains data from patients who are prone to the epidemic. It contains three types of lungs CT images (Normal, Pneumonia, and COVID-19) collected from two different sources; the first one is the Radiology Department of Nishtar Hospital Multan and Civil Hospital Bahawalpur, Pakistan, and the second one is a publicly free available medical imaging database known as Radiopaedia. For the preprocessing, a novel fuzzy c-mean automated region-growing segmentation approach is deployed to take an automated region of interest (ROIs) and acquire 52 hybrid statistical features for each ROIs. Also, 12 optimized statistical features are selected via the chi-square feature reduction technique. For the classification, five machine learning classifiers named as deep learning J4, multilayer perceptron, support vector machine, random forest, and naive Bayes are deployed to optimize the hybrid statistical features dataset. It is observed that the deep learning J4 has promising results (sensitivity and specificity: 0.987; accuracy: 98.67%) among all the deployed classifiers. As a complementary study, a statistical work is devoted to the use of a new statistical model to fit the main datasets of COVID-19 collected in Pakistan.  相似文献   

3.
Early diagnosis of a pandemic disease like COVID-19 can help deal with a dire situation and help radiologists and other experts manage human resources more effectively. In a recent pandemic, laboratories perform diagnostics manually, which requires a lot of time and expertise of the laboratorial technicians to yield accurate results. Moreover, the cost of kits is high, and well-equipped labs are needed to perform this test. Therefore, other means of diagnosis is highly desirable. Radiography is one of the existing methods that finds its use in the diagnosis of COVID-19. The radiography observes change in Computed Tomography (CT) chest images of patients, developing a deep learning-based method to extract graphical features which are used for automated diagnosis of the disease ahead of laboratory-based testing. The proposed work suggests an Artificial Intelligence (AI) based technique for rapid diagnosis of COVID-19 from given volumetric chest CT images of patients by extracting its visual features and then using these features in the deep learning module. The proposed convolutional neural network aims to classify the infectious and non-infectious SARS-COV2 subjects. The proposed network utilizes 746 chests scanned CT images of 349 images belonging to COVID-19 positive cases, while 397 belong to negative cases of COVID-19. Our experiment resulted in an accuracy of 98.4%, sensitivity of 98.5%, specificity of 98.3%, precision of 97.1%, and F1-score of 97.8%. The additional parameters of classification error, mean absolute error (MAE), root-mean-square error (RMSE), and Matthew’s correlation coefficient (MCC) are used to evaluate our proposed work. The obtained result shows the outstanding performance for the classification of infectious and non-infectious for COVID-19 cases.  相似文献   

4.
The COVID-19 pandemic poses an additional serious public health threat due to little or no pre-existing human immunity, and developing a system to identify COVID-19 in its early stages will save millions of lives. This study applied support vector machine (SVM), k-nearest neighbor (K-NN) and deep learning convolutional neural network (CNN) algorithms to classify and detect COVID-19 using chest X-ray radiographs. To test the proposed system, chest X-ray radiographs and CT images were collected from different standard databases, which contained 95 normal images, 140 COVID-19 images and 10 SARS images. Two scenarios were considered to develop a system for predicting COVID-19. In the first scenario, the Gaussian filter was applied to remove noise from the chest X-ray radiograph images, and then the adaptive region growing technique was used to segment the region of interest from the chest X-ray radiographs. After segmentation, a hybrid feature extraction composed of 2D-DWT and gray level co-occurrence matrix was utilized to extract the features significant for detecting COVID-19. These features were processed using SVM and K-NN. In the second scenario, a CNN transfer model (ResNet 50) was used to detect COVID-19. The system was examined and evaluated through multiclass statistical analysis, and the empirical results of the analysis found significant values of 97.14%, 99.34%, 99.26%, 99.26% and 99.40% for accuracy, specificity, sensitivity, recall and AUC, respectively. Thus, the CNN model showed significant success; it achieved optimal accuracy, effectiveness and robustness for detecting COVID-19.  相似文献   

5.
COVID-19 has been considered one of the recent epidemics that occurred at the last of 2019 and the beginning of 2020 that world widespread. This spread of COVID-19 requires a fast technique for diagnosis to make the appropriate decision for the treatment. X-ray images are one of the most classifiable images that are used widely in diagnosing patients’ data depending on radiographs due to their structures and tissues that could be classified. Convolutional Neural Networks (CNN) is the most accurate classification technique used to diagnose COVID-19 because of the ability to use a different number of convolutional layers and its high classification accuracy. Classification using CNNs techniques requires a large number of images to learn and obtain satisfactory results. In this paper, we used SqueezNet with a modified output layer to classify X-ray images into three groups: COVID-19, normal, and pneumonia. In this study, we propose a deep learning method with enhance the features of X-ray images collected from Kaggle, Figshare to distinguish between COVID-19, Normal, and Pneumonia infection. In this regard, several techniques were used on the selected image samples which are Unsharp filter, Histogram equal, and Complement image to produce another view of the dataset. The Squeeze Net CNN model has been tested in two scenarios using the 13,437 X-ray images that include 4479 for each type (COVID-19, Normal and Pneumonia). In the first scenario, the model has been tested without any enhancement on the datasets. It achieved an accuracy of 91%. But, in the second scenario, the model was tested using the same previous images after being improved by several techniques and the performance was high at approximately 95%. The conclusion of this study is the used model gives higher accuracy results for enhanced images compared with the accuracy results for the original images. A comparison of the outcomes demonstrated the effectiveness of our DL method for classifying COVID-19 based on enhanced X-ray images.  相似文献   

6.
In medical imaging, segmenting brain tumor becomes a vital task, and it provides a way for early diagnosis and treatment. Manual segmentation of brain tumor in magnetic resonance (MR) images is a time‐consuming and challenging task. Hence, there is a need for a computer‐aided brain tumor segmentation approach. Using deep learning algorithms, a robust brain tumor segmentation approach is implemented by integrating convolution neural network (CNN) and multiple kernel K means clustering (MKKMC). In this proposed CNN‐MKKMC approach, classification of MR images into normal and abnormal is performed by CNN algorithm. At next, MKKMC algorithm is employed to segment the brain tumor from the abnormal brain image. The proposed CNN‐MKKMC algorithm is evaluated both visually and objectively in terms of accuracy, sensitivity, and specificity with the existing segmentation methods. The experimental results demonstrate that the proposed CNN‐MKKMC approach yields better accuracy in segmenting brain tumor with less time cost.  相似文献   

7.
8.
The exponential increase in new coronavirus disease 2019 ({COVID-19}) cases and deaths has made COVID-19 the leading cause of death in many countries. Thus, in this study, we propose an efficient technique for the automatic detection of COVID-19 and pneumonia based on X-ray images. A stacked denoising convolutional autoencoder (SDCA) model was proposed to classify X-ray images into three classes: normal, pneumonia, and {COVID-19}. The SDCA model was used to obtain a good representation of the input data and extract the relevant features from noisy images. The proposed model’s architecture mainly composed of eight autoencoders, which were fed to two dense layers and SoftMax classifiers. The proposed model was evaluated with 6356 images from the datasets from different sources. The experiments and evaluation of the proposed model were applied to an 80/20 training/validation split and for five cross-validation data splitting, respectively. The metrics used for the SDCA model were the classification accuracy, precision, sensitivity, and specificity for both schemes. Our results demonstrated the superiority of the proposed model in classifying X-ray images with high accuracy of 96.8%. Therefore, this model can help physicians accelerate COVID-19 diagnosis.  相似文献   

9.
10.
The prompt spread of Coronavirus (COVID-19) subsequently adorns a big threat to the people around the globe. The evolving and the perpetually diagnosis of coronavirus has become a critical challenge for the healthcare sector. Drastically increase of COVID-19 has rendered the necessity to detect the people who are more likely to get infected. Lately, the testing kits for COVID-19 are not available to deal it with required proficiency, along with-it countries have been widely hit by the COVID-19 disruption. To keep in view the need of hour asks for an automatic diagnosis system for early detection of COVID-19. It would be a feather in the cap if the early diagnosis of COVID-19 could reveal that how it has been affecting the masses immensely. According to the apparent clinical research, it has unleashed that most of the COVID-19 cases are more likely to fall for a lung infection. The abrupt changes do require a solution so the technology is out there to pace up, Chest X-ray and Computer tomography (CT) scan images could significantly identify the preliminaries of COVID-19 like lungs infection. CT scan and X-ray images could flourish the cause of detecting at an early stage and it has proved to be helpful to radiologists and the medical practitioners. The unbearable circumstances compel us to flatten the curve of the sufferers so a need to develop is obvious, a quick and highly responsive automatic system based on Artificial Intelligence (AI) is always there to aid against the masses to be prone to COVID-19. The proposed Intelligent decision support system for COVID-19 empowered with deep learning (ID2S-COVID19-DL) study suggests Deep learning (DL) based Convolutional neural network (CNN) approaches for effective and accurate detection to the maximum extent it could be, detection of coronavirus is assisted by using X-ray and CT-scan images. The primary experimental results here have depicted the maximum accuracy for training and is around 98.11 percent and for validation it comes out to be approximately 95.5 percent while statistical parameters like sensitivity and specificity for training is 98.03 percent and 98.20 percent respectively, and for validation 94.38 percent and 97.06 percent respectively. The suggested Deep Learning-based CNN model unleashed here opts for a comparable performance with medical experts and it is helpful to enhance the working productivity of radiologists. It could take the curve down with the downright contribution of radiologists, rapid detection of COVID-19, and to overcome this current pandemic with the proven efficacy.  相似文献   

11.
12.
Tumor detection has been an active research topic in recent years due to the high mortality rate. Computer vision (CV) and image processing techniques have recently become popular for detecting tumors in MRI images. The automated detection process is simpler and takes less time than manual processing. In addition, the difference in the expanding shape of brain tumor tissues complicates and complicates tumor detection for clinicians. We proposed a new framework for tumor detection as well as tumor classification into relevant categories in this paper. For tumor segmentation, the proposed framework employs the Particle Swarm Optimization (PSO) algorithm, and for classification, the convolutional neural network (CNN) algorithm. Popular preprocessing techniques such as noise removal, image sharpening, and skull stripping are used at the start of the segmentation process. Then, PSO-based segmentation is applied. In the classification step, two pre-trained CNN models, alexnet and inception-V3, are used and trained using transfer learning. Using a serial approach, features are extracted from both trained models and fused features for final classification. For classification, a variety of machine learning classifiers are used. Average dice values on datasets BRATS-2018 and BRATS-2017 are 98.11 percent and 98.25 percent, respectively, whereas average jaccard values are 96.30 percent and 96.57% (Segmentation Results). The results were extended on the same datasets for classification and achieved 99.0% accuracy, sensitivity of 0.99, specificity of 0.99, and precision of 0.99. Finally, the proposed method is compared to state-of-the-art existing methods and outperforms them.  相似文献   

13.
The latest studies with radiological imaging techniques indicate that X-ray images provide valuable details on the Coronavirus disease 2019 (COVID-19). The usage of sophisticated artificial intelligence technology (AI) and the radiological images can help in diagnosing the disease reliably and addressing the problem of the shortage of trained doctors in remote villages. In this research, the automated diagnosis of Coronavirus disease was performed using a dataset of X-ray images of patients with severe bacterial pneumonia, reported COVID-19 disease, and normal cases. The goal of the study is to analyze the achievements for medical image recognition of state-of-the-art neural networking architectures. Transfer Learning technique has been implemented in this work. Transfer learning is an ambitious task, but it results in impressive outcomes for identifying distinct patterns in tiny datasets of medical images. The findings indicate that deep learning with X-ray imagery could retrieve important biomarkers relevant for COVID-19 disease detection. Since all diagnostic measures show failure levels that pose questions, the scientific profession should determine the probability of integration of X-rays with the clinical treatment, utilizing the results. The proposed model achieved 96.73% accuracy outperforming the ResNet50 and traditional Resnet18 models. Based on our findings, the proposed system can help the specialist doctors in making verdicts for COVID-19 detection.  相似文献   

14.
Breast cancer (BC) is the most common cause of women’s deaths worldwide. The mammography technique is the most important modality for the detection of BC. To detect abnormalities in mammographic images, the Breast Imaging Reporting and Data System (BI-RADs) is used as a baseline. The correct allocation of BI-RADs categories for mammographic images is always an interesting task, even for specialists. In this work, to detect and classify the mammogram images in BI-RADs, a novel hybrid model is presented using a convolutional neural network (CNN) with the integration of a support vector machine (SVM). The dataset used in this research was collected from different hospitals in the Qassim health cluster of Saudi Arabia. The collection of all categories of BI-RADs is one of the major contributions of this paper. Another significant contribution is the development of a hybrid approach through the integration of CNN and SVM. The proposed hybrid approach uses three CNN models to obtain ensemble CNN model results. This ensemble model saves the values to integrate them with SVM. The proposed system achieved a classification accuracy, sensitivity, specificity, precision, and F1-score of 93.6%, 94.8%, 96.9%, 96.6%, and 95.7%, respectively. The proposed model achieved better performance compared to previously available methods.  相似文献   

15.
Lightweight deep convolutional neural networks (CNNs) present a good solution to achieve fast and accurate image-guided diagnostic procedures of COVID-19 patients. Recently, advantages of portable Ultrasound (US) imaging such as simplicity and safe procedures have attracted many radiologists for scanning suspected COVID-19 cases. In this paper, a new framework of lightweight deep learning classifiers, namely COVID-LWNet is proposed to identify COVID-19 and pneumonia abnormalities in US images. Compared to traditional deep learning models, lightweight CNNs showed significant performance of real-time vision applications by using mobile devices with limited hardware resources. Four main lightweight deep learning models, namely MobileNets, ShuffleNets, MENet and MnasNet have been proposed to identify the health status of lungs using US images. Public image dataset (POCUS) was used to validate our proposed COVID-LWNet framework successfully. Three classes of infectious COVID-19, bacterial pneumonia, and the healthy lung were investigated in this study. The results showed that the performance of our proposed MnasNet classifier achieved the best accuracy score and shortest training time of 99.0% and 647.0 s, respectively. This paper demonstrates the feasibility of using our proposed COVID-LWNet framework as a new mobile-based radiological tool for clinical diagnosis of COVID-19 and other lung diseases.  相似文献   

16.
Biopsy is one of the most commonly used modality to identify breast cancer in women, where tissue is removed and studied by the pathologist under the microscope to look for abnormalities in tissue. This technique can be time-consuming, error-prone, and provides variable results depending on the expertise level of the pathologist. An automated and efficient approach not only aids in the diagnosis of breast cancer but also reduces human effort. In this paper, we develop an automated approach for the diagnosis of breast cancer tumors using histopathological images. In the proposed approach, we design a residual learning-based 152-layered convolutional neural network, named as ResHist for breast cancer histopathological image classification. ResHist model learns rich and discriminative features from the histopathological images and classifies histopathological images into benign and malignant classes. In addition, to enhance the performance of the developed model, we design a data augmentation technique, which is based on stain normalization, image patches generation, and affine transformation. The performance of the proposed approach is evaluated on publicly available BreaKHis dataset. The proposed ResHist model achieves an accuracy of 84.34% and an F1-score of 90.49% for the classification of histopathological images. Also, this approach achieves an accuracy of 92.52% and F1-score of 93.45% when data augmentation is employed. The proposed approach outperforms the existing methodologies in the classification of benign and malignant histopathological images. Furthermore, our experimental results demonstrate the superiority of our approach over the pre-trained networks, namely AlexNet, VGG16, VGG19, GoogleNet, Inception-v3, ResNet50, and ResNet152 for the classification of histopathological images.  相似文献   

17.
A hybrid convolutional neural network (CNN)-based model is proposed in the article for accurate detection of COVID-19, pneumonia, and normal patients using chest X-ray images. The input images are first pre-processed to tackle problems associated with the formation of the dataset from different sources, image quality issues, and imbalances in the dataset. The literature suggests that several abnormalities can be found with limited medical image datasets by using transfer learning. Hence, various pre-trained CNN models: VGG-19, InceptionV3, MobileNetV2, and DenseNet are adopted in the present work. Finally, with the help of these models, four hybrid models: VID (VGG-19, Inception, and DenseNet), VMI(VGG-19, MobileNet, and Inception), VMD (VGG-19, MobileNet, and DenseNet), and IMD(Inception, MobileNet, and DenseNet) are proposed. The model outcome is also tested using five-fold cross-validation. The best-performing hybrid model is the VMD model with an overall testing accuracy of 97.3%. Thus, a new hybrid model architecture is presented in the work that combines three individual base CNN models in a parallel configuration to counterbalance the shortcomings of individual models. The experimentation result reveals that the proposed hybrid model outperforms most of the previously suggested models. This model can also be used in the identification of diseases, especially in rural areas where limited laboratory facilities are available.  相似文献   

18.
Abnormal growth of brain tissues is the real cause of brain tumor. Strategy for the diagnosis of brain tumor at initial stages is one of the key step for saving the life of a patient. The manual segmentation of brain tumor magnetic resonance images (MRIs) takes time and results vary significantly in low-level features. To address this issue, we have proposed a ResNet-50 feature extractor depended on multilevel deep convolutional neural network (CNN) for reliable images segmentation by considering the low-level features of MRI. In this model, we have extracted features through ResNet-50 architecture and fed these feature maps to multi-level CNN model. To handle the classification process, we have collected a total number of 2043 MRI patients of normal, benign, and malignant tumor. Three model CNN, multi-level CNN, and ResNet-50 based multi-level CNN have been used for detection and classification of brain tumors. All the model results are calculated in terms of various numerical values identified as precision (P), recall (R), accuracy (Acc) and f1-score (F1-S). The obtained average results are much better as compared to already existing methods. This modified transfer learning architecture might help the radiologists and doctors as a better significant system for tumor diagnosis.  相似文献   

19.
《成像科学杂志》2013,61(7):568-578
Abstract

An automated computerised tomography (CT) and magnetic resonance imaging (MRI) brain images are used to perform an efficient classification. The proposed technique consists of three stages, namely, pre-processing, feature extraction and classification. Initially, pre-processing is performed to remove the noise from the medical MRI images. Then, in the feature extraction stage, the features that are related with MRI and CT images are extracted and these extracted features which are given to the Feed Forward Back-propagation Neural Network (FFBNN) is exploited in order to classify the brain MRI and CT images into two types: normal and abnormal. The FFBNN is well trained by the extracted features and uses the unknown medical brain MRI images for classification in order to achieve better classification performance. The proposed method is validated by various MRI and CT scan images. A classification with an accomplishment of 96% and 70% has been obtained by the proposed FFBNN classifier. This achievement shows the effectiveness of the proposed brain image classification technique when compared with other recent research works.  相似文献   

20.
This study is designed to develop Artificial Intelligence (AI) based analysis tool that could accurately detect COVID-19 lung infections based on portable chest x-rays (CXRs). The frontline physicians and radiologists suffer from grand challenges for COVID-19 pandemic due to the suboptimal image quality and the large volume of CXRs. In this study, AI-based analysis tools were developed that can precisely classify COVID-19 lung infection. Publicly available datasets of COVID-19 (N = 1525), non-COVID-19 normal (N = 1525), viral pneumonia (N = 1342) and bacterial pneumonia (N = 2521) from the Italian Society of Medical and Interventional Radiology (SIRM), Radiopaedia, The Cancer Imaging Archive (TCIA) and Kaggle repositories were taken. A multi-approach utilizing deep learning ResNet101 with and without hyperparameters optimization was employed. Additionally, the features extracted from the average pooling layer of ResNet101 were used as input to machine learning (ML) algorithms, which twice trained the learning algorithms. The ResNet101 with optimized parameters yielded improved performance to default parameters. The extracted features from ResNet101 are fed to the k-nearest neighbor (KNN) and support vector machine (SVM) yielded the highest 3-class classification performance of 99.86% and 99.46%, respectively. The results indicate that the proposed approach can be better utilized for improving the accuracy and diagnostic efficiency of CXRs. The proposed deep learning model has the potential to improve further the efficiency of the healthcare systems for proper diagnosis and prognosis of COVID-19 lung infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号