首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to obtain the superalloy with excellent properties, graphene reinforced K418 nickel base superalloy (GNPs/K418 composite) was prepared by selective laser melting technique in this study. Through systematically comparing and analyzing the microstructure and mechanical property of K418 superalloy and GNPs/K418 composite, it is found that the percentage of small-diameter grain (≤ 15 μm) increased from 84% to 90%, and the max strength of grain orientation (<001>) reduce from 5.76 to 4.17 due to the addition of GNPs. And GNPs can also improve the height and the full width at the half peak of the strong diffraction peak of GNPs/K418 composite. Besides, GNPs/K418 composite is a kind of sandwiched structure, which is consist of GNPs, carbides, and K418 matrix. Therefore, the hardness of the GNPs/K418 composite is 4.1% and 6.9% higher than that of the K418 matrix in the transverse and vertical direction, respectively. The room temperature tensile strength of the GNPs/K418 composite is 9% higher than that of the K418 matrix. And the 600 °C and 900 °C tensile strengths of the GNPs/K418 composite are 7.6% and 10.4% higher than that of the K418 matrix, respectively. It is inferred that the effect of graphene on K418 matrix strengthening is mainly fine grain strengthening and Orowan strengthening. However, the elongation rate of the composite material is reduced, which is attributed to crack sprouting at the interface between the matrix and GNPs under high stress.  相似文献   

2.
In this work,the microstructural evolution,micro-crack formation,and mechanical anisotropy of the selective laser melted(SLM) carbon-free Mar-M509 Co-based superalloy were systematically studied under different linear energy densities(LED).Observation shows that the SLM Mar-M509 superalloy possesses a fully dense structure,whereas some microcracks exist along the building direction.The electron backscatter diffraction results reveal that dominant columnar grains tend to elongate along the buildi...  相似文献   

3.
Three-dimensional parts of the 30 CrMnSiA steel were successfully fabricated using selective laser melting(SLM). The microstructures and mechanical properties of the SLM-processed 30 CrMnSiA samples were investigated by scanning electron microscope and transmission electron microscopy. The results indicate that the microstructures of the 30 CrMnSiA samples consist mainly of lath martensite and acicular martensite. The value of the surface roughness decreases with increasing laser energy density(LED) before it reaches a minimum and then increases with further increasing LED. The relative density, microhardness and ultimate tensile strength of the SLM-processed samples initially increase and then decrease with increasing LED. By taking the relative density, surface roughness, microhardness and ultimate tensile strength into account, the optimized LED should be in the range of 46.15–51.28 J mm~(-3) for the SLM-processed30 CrMnSiA alloys. In addition, the differences in the microstructures and mechanical properties between the conventionally wrought 30 CrMnSiA sample and SLM-processed 30 CrMnSiA samples were also studied.  相似文献   

4.
鲁中良  史玉升  刘锦辉  陈英  黄树槐 《铸造技术》2007,28(11):1436-1441
采用选择性激光烧结(Selective laser sintering,SLS)和选择性激光熔化(Selective laser melting,SLM)工艺,分别进行了铁基合金粉末的快速成形试验,对比分析了SLS与SLM成形机理、相应的工艺参数以及它们对测试件成形过程、金相组织与力学性能的影响。结果表明:由于成形机理不同,相对于SLS技术,采用SLM能够制造高致密度、组织均匀、力学性能良好的金属零件,但容易出现翘曲变形、裂纹与球化现象。通过制定合适的材料与工艺参数能够避免上述缺陷。  相似文献   

5.
通过激光选区熔化(SLM)技术制备了高致密度的CoCrMo和Cr3C2/CoCrMo合金,对比研究CoCrMo和Cr3C2/CoCrMo合金的组织结构、拉伸性能及磨损性能,探讨添加Cr3C2颗粒对CoCrMo合金组织及性能的影响机制。研究发现,合金的主要组成相为γ-Co和ε-Co,添加Cr3C2使合金的物相发生改变,产生M23C6相。CoCrMo与Cr3C2/CoCrMo合金的组织均由外延生长的柱状晶和等轴晶组成,添加Cr3C2使柱状晶数量减少。Cr3C2/CoCrMo合金的硬度为514±18 HV,抗拉强度为1520 MPa,相比于CoCrMo合金分别提升了27%、39%。在相同载荷下,Cr3C2/CoCrMo合金的磨损量明显小于CoCrMo合金,耐磨性能提升30%。在SLM过程中,添加的Cr3C2颗粒快速熔解,Cr固溶在基体中,产生固溶强化;在晶界处转变生成M23C6型碳化物,具有沉淀强化作用,有效提高了合金的强度和耐磨性。  相似文献   

6.
应用高速凝固定向凝固方法研究凝固工艺参数(抽拉速度、模壳保温温度)对DZ125高温合金铸件组织及性能的影响。结果发现,升高模壳保温温度可大幅度提高温度梯度,并制备出晶粒挺直度更为优良的铸件。枝晶组织及γ′析出相在壁厚较大部位更为粗大,且均随着抽拉速率及模壳保温温度的提高得到细化。显微偏析随抽拉速率的增加先减轻后加重,随模壳保温温度的提高部分元素偏析加重,部分元素减轻;γ+γ'共晶含量随抽拉速率的增大和模壳保温温度的提高而减少。铸件经标准热处理后,枝晶组织模糊不清,γ'析出相由于凝固参数变化而引起的差异显著减轻,且共晶组织几乎全部消除。抽拉速率变化对热处理态铸件性能无显著影响,但温度梯度的提高改善了铸件晶粒的挺直度,减小了晶粒偏离轴向的角度,提高了铸件性能。  相似文献   

7.
Al-7Si-0.5 Mg-0.5Cu alloy specimens have been fabricated by selective laser melting (SLM). In this study, the effects of solution treatment, quenching, and artificial aging on the microstructural evolution, as well as mechanical and wear properties, have been investigated. The as-prepared samples show a heterogeneous cellular microstructure with two different cell sizes composed of α-Al and Si phases. After solution-treated and quenched (SQ) heat treatment, the cellular microstructure disappears, and coarse and lumpy Si phase precipitates and a rectangular Cu-rich phase were observed. Subsequent aging after solution-treated and quenched (SQA) heat treatment causes the formation of nanosized Cu-rich precipitates. The as-prepared SLMs sample has good mechanical properties and wear resistance (compressive yield strength: 215 ± 6 MPa and wear rate 2 × 10-13 m3/m). The SQ samples with lumpy Si particles have the lowest strength of 167 ± 13 MPa and the highest wear rate of 6.18 × 10-13 m3/m. The formation of nanosized Cu-rich precipitates in the SQA samples leads to the highest compressive yield strength of 233 ± 6 MPa and a good wear rate of 5.06 × 10-13 m3/m.  相似文献   

8.
The microstructural evolution and mechanical properties of a spray-formed superalloy were studied in this paper. Based on a better understanding of the microstructural evolution of the spray-formed superalloy during solution treatment, an optimum solution treatment process was obtained, namely, at 1,140 °C for 6 h, and air cooling(AC). The effects of the ageing treatments on the mechanical properties of the post-solution-treated spray-formed superalloy were evaluated using ageing harden curves and tensile testing. The results indicated that the maximum hardness value was achieved at 850 °C for 8 h, AC. Due to co-precipitation of primary and secondary c0 precipitates during the heat treatment,the spray-formed superalloy obtained an excellent combination of yield strength(YS = 1,110 MPa), ultimate tensile strength(UTS = 1,503 MPa), ductility(elongation, EL = 21%) and excellent stress rupture properties at 650 °C(UTS = 1,209 MPa, EL = 15.8%). The heat treatment also improved the rupture life at 650 °C/950 MPa and 750 °C/539 MPa up to 140 h without rupturing. The tensile-fractured surfaces exhibit ductile transgranular failure feature. The optimum heat treatment process was determined to be 1,140 °C/6 h+850 °C/8 h+AC.  相似文献   

9.
采用选区激光熔化制备了GH3536合金,并分别进行固溶处理和热等静压处理,研究不同热处理手段对GH3536合金的组织形貌、晶界形态及室温拉伸行为的影响。结果表明:沉积态试样的组织由超细柱状亚晶粒与熔池界组成,存在气孔与微裂纹等缺陷;选区激光熔化试样分别经固溶处理和热等静压处理后,二者致密度均上升,组织转变为由交替分布的大小不等等轴晶粒组成,但热等静压的沿晶界析出M_(23)C_6相,形成锯齿状的弯曲晶界;沉积态试样的拉伸性能表现出各向异性的特点,固溶处理可消除拉伸性能的各向异性,但抗拉强度和屈服强度均有下降,延伸率明显上升。热等静压态试样与固溶态试样相类似,但其抗拉强度、屈服强度和延伸率均有进一步的提高;3种形态合金的断裂机制均为微孔聚集型的韧性断裂。  相似文献   

10.
WC–Co cemented carbides, well-known as the conventional tooling materials, have not been successfully produced by one step additive manufacturing processes such as selective laser melting(SLM) yet. The microstructure evolution as well as WC grain growth behavior has rarely been investigated in detail during SLM process. In this study, the WC–Co cemented carbides with different Co contents(12–32 wt%) were prepared by optimized SLM processes for comparative investigation of densification behavior, microstructure characterization and mechanical property. The increase in Co content in feedstock carbide granules can improve the densification behavior during SLM process. The SLM processed WC-12 Co shows larger average WC grain size and higher percentage of coarser WC grains as compared with both WC-20 Co and WC-32 Co. The microstructure characterization, combined with finite element simulation, shows the WC grain growth mechanisms include agglomeration and dissolution-deposition of WC during SLM process and agglomeration of WC is an important mechanism especially for WC–Co cemented carbides with Co content as low as 12 wt%. The comparison between horizontal(perpendicular to the SLM laser beam) and vertical(parallel to the SLM laser beam) cross sections of carbides shows that SLM process introduces a certain degree of microstructure and mechanical behavior anisotropy for WC-12 Co, WC-20 Co, and WC-32 Co.  相似文献   

11.
激光熔化沉积定向快速凝固高温合金组织及性能   总被引:1,自引:0,他引:1  
采用激光熔化沉积定向快速凝固工艺,制备出了具有快速定向生长微细柱晶组织的Rene95高温合金板状试样,其一次枝晶间距约为7 μm、枝晶间完全无γ/γ'共晶组织析出.结果表明,激光熔化沉积定向快速凝固微细柱晶Rene95高温合金具有优异的力学性能.  相似文献   

12.
The construction and application of traditional high-strength 7075 aluminum alloy (Al7075) through selective laser melting (SLM) are currently restricted by the serious hot cracking phenomenon. To address this critical issue, in this study, Si is employed to assist the SLM printing of high-strength Al7075. The laser energy density during SLM is optimized, and the effects of Si element on solidification path, relative density, microstructure and mechanical properties of Al7075 alloy are studied systematically. With the modified solidification path, laser energy density, and the dense microstructure with refined grain size and semi-continuous precipitates network at grain boundaries, which consists of fine Si, β-Mg2Si, Q-phase and θ-Al2Cu, the hot cracking phenomenon and mechanical properties are effectively improved. As a result, the tensile strength of the SLM-processed Si-modified Al7075 can reach 486 ± 3 MPa, with a high relative density of ~ 99.4%, a yield strength of 291 ± 8 MPa, fracture elongation of (6.4 ± 0.4)% and hardness of 162 ± 2 (HV0.2) at the laser energy density of 112.5 J/mm3. The main strengthening mechanism with Si modification is demonstrated to be the synergetic enhancement of grain refinement, solution strengthening, load transfer, and dislocation strengthening. This work will inspire more new design of high-strength alloys through SLM.  相似文献   

13.
研究了单、双层扫描策略和能量密度(246~640 J/mm3)对选区激光熔化钽显微组织及力学性能的影响。采用扫描电子显微镜和电子背散射衍射对选区激光熔化钽的显微组织进行表征,并对其显微硬度和拉伸性能进行检测。结果表明,选区激光熔化钽显微组织由明显向上生长的柱状晶构成,双层扫描后的钽具有更细的晶粒尺寸。随着输入能量密度的提高,选区激光熔化钽的强度、显微硬度和塑性均具有明显的上升趋势。此外,双层扫描工艺可进一步提高材料密度,且在保留强度的基础上,增强材料塑性。在能量密度为640 J/mm3(双层扫描)时,金属钽性能最优,显微硬度、极限抗拉伸强度及延伸率分别为2307 MPa,527 MPa和11.4%。  相似文献   

14.
Previous studies have revealed that laser power and energy density are significant factors affecting the quality of parts manufactured by selective laser melting(SLM).The normalized equivalent density E_0~* and dimensionless laser power q~*,which can be regarded as a progress on the understanding of the corresponding dimensional quantities,are adopted in this study to examine the defects,melt pool shape,and primary dendrite spacing of the SLM-manufactured 316 L stainless steel,because it reflects the combined effect of process parameters and material features.It is found that the number of large defects decreases with increasing E_0~* due to enough heat input during the SLM process,but it will show an increasing trend when excessive heat input(i.e.,utilizing a high E_0~*) is imported into the powder bed.The q~* plays an important role in controlling maximum temperature rising in the SLM process,and in turn,it affects the number of large defects.A large q~* value results in a low value of absolute frequency of large defects,whereas a maximum value of absolute frequency of large defects is achieved at a low q~* even if E_0~* is very high.The density of the built parts is greater at a higher q~* when E_0~* remains constant.Increasing the melt pool depth at relatively low value of E_0~* enhances the relative density of the parts.A narrow,deep melt pool can be easily generated at a high q~* when E_0~* is sumciently high,but it may increase melt pool instability and cause keyhole defects.It is revealed that a low E_0~* can lead to a high cooling rate,which results in a refined primary dendrite spacing.Relatively low E_0~* is emphasized in selecting the process parameters for the tensile test sample fabrication.It shows that excellent tensile properties,namely ultimate tensile strength,yield strength,and elongation to failure of773 MPa,584 MPa,and 46%,respectively,can be achieved at a relatively low E_0~* without heat treatment.  相似文献   

15.
本文采用激光选区熔化技术制备了高致密度Inconel 718合金试样,研究了工艺参数(激光功率,扫描速度)对合金试样致密度的影响规律,分析了孔隙缺陷的形成原因,对比研究了微小孔隙缺陷存在条件下的拉伸性能变化,并比较了热处理对不同致密度合金力学性能影响。实验结果表明:工艺参数的改变决定了激光与粉末相互作用的模式,在较高激光功率、低扫描速度条件下发生了“匙孔”模式,气孔较多,致密度降低;当功率减小或者扫描速度增大会由“匙孔”模式向“热传导”模式转变,气孔较少,致密度会升高;但是当激光功率过小或者扫描速度过大时产生未熔合孔隙缺陷,使得材料的致密度出现大幅度减小的现象。拉伸测试结果表明,激光选区熔化成形Inconel 718合金的强度并不会随着致密度的增大呈严格单调增大的变化趋势,微小孔隙缺陷的形貌、数量和尺寸也会对拉伸性能产生影响。SIDA热处理可以大幅提高激光选区熔化成形Inconel 718合金的显微硬度及抗拉强度,但塑性呈显著降低。  相似文献   

16.
激光重熔使得材料表面的固化层再次快速熔化、凝固,从而提高了材料的致密度和表面质量。作为一种表面改性技术,激光重熔已经在传统制造工艺中得到了广泛的应用。近期研究表明,激光重熔技术也可以应用到选区激光熔化(SLM)中,实现消除缺陷并优化组织结构。激光重熔技术还可以提高零件的硬度和延展性等力学性能。本文主要总结了激光重熔对于常见SLM成形金属材料的质量提升作用,激光重熔工艺手段以及重熔参数(重熔激光功率、重熔扫描速度、重熔扫描间距和重熔次数)对于缺陷消除、组织结构优化的作用规律。  相似文献   

17.
采用SEM、EBSD、OM等方法,研究了激光体能量密度E对SLM成形Inconel 738合金致密度、微观组织和显微硬度影响。研究表明:在SLM成形过程中,激光体能量密度E对试样致密度起决定性作用,随着激光体能量密度的增大,致密度呈现先上升后下降的趋势,并且在65.2 J/mm&lt;sub&gt;3&lt;/sub&gt;可以实现最高致密度(99.4%);凝固过程中冷却速率高达2.44&#215;10&lt;sub&gt;5&lt;/sub&gt; K/s,SLM成形Inconel 738合金的组织垂直与打印方向和平行与打印方向有明显的各向异性,平行于打印方向的组织呈“棋盘状”形貌,垂直与打印方向为“鱼鳞状”形貌,层与层之间、不同道次之间的熔池搭接区为晶粒细化的胞晶;显微组织表现出明显的织构,随着激光体能量密度的增大,<001>方向的织构逐渐增强;试样的硬度随着激光体能量密度的增大而增大,当硬度值超过65.2 J/mm&lt;sub&gt;3&lt;/sub&gt;时,SLM成形Inconel 738合金的硬度值超过精铸试样(410 HV),硬度值在各个面上的分布是定向独立的。  相似文献   

18.
基于Inconel718镍基高温合金材料的可焊性分析以及对大厚度比焊接件的结构分析,以1mm厚度的薄壁件为切入点研究了采用与不采用辅助夹具进行焊接定位的施焊效果。采用钨极脉冲氩弧焊方法使用辅助夹具对0.8mm厚度薄板进行焊接工艺试验,获得熔合良好的接头。大厚度比(1∶11)构件的焊接工艺应以控制热输入与防止薄壁件变形为原则,通过分析结构特点可利用夹具进行定位、辅助散热的作用制定出有效的焊接工艺。  相似文献   

19.
The density of the SLM forming parts is investigated to determine the good technological parameters of SLM at the same time obtain the dense parts. In the SLM experiment, material used is Fe-Ni metal powder, the good technological parameters of SLM are determined by analyzing the effect of the laser electric current, the laser pulse width, the pulse of laser light frequency, the scan speed, the scan interval, push powder thickness and the scanning way on the single channel scanning, the single-layer scannin...  相似文献   

20.
AlSi10Mg alloy was prepared by selected laser melting(SLM) in a high laser power range 300–400 W. The effects of energy density on the relative density, microstructure and mechanical properties of the SLMed AlSi10Mg alloy were studied. The results showed that the SLMed AlSi10Mg alloy fabricated at a laser power of 400 W and a scanning speed of 1800 mm/s had a relative density of 99.4%, a hardness of 147.8 HV, a tensile strength of 471.3 MPa, a yield strength of 307.1 MPa, and an elongation of 9....  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号