首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Since the introduction of the Internet of Things (IoT), several researchers have been exploring its productivity to utilize and organize the spectrum assets. Cognitive radio (CR) technology is characterized as the best aspirant for wireless communications to augment IoT competencies. In the CR networks, secondary users (SUs) opportunistically get access to the primary users (PUs) spectrum through spectrum sensing. The multipath issues in the wireless channel can fluster the sensing ability of the individual SUs. Therefore, several cooperative SUs are engaged in cooperative spectrum sensing (CSS) to ensure reliable sensing results. In CSS, security is still a major concern for the researchers to safeguard the fusion center (FC) against abnormal sensing reports initiated by the malicious users (MUs). In this paper, butterfly optimization algorithm (BOA)-based soft decision method is proposed to find an optimized weighting coefficient vector correlated to the SUs sensing notifications. The coefficient vector is utilized in the soft decision rule at the FC before making any global decision. The effectiveness of the proposed scheme is compared for a variety of parameters with existing schemes through simulation results. The results confirmed the supremacy of the proposed BOA scheme in both the normal SUs’ environment and when lower and higher SNRs information is carried by the different categories of MUs.  相似文献   

2.
Wireless sensor networks (WSNs) and Internet of Things (IoT) have gained more popularity in recent years as an underlying infrastructure for connected devices and sensors in smart cities. The data generated from these sensors are used by smart cities to strengthen their infrastructure, utilities, and public services. WSNs are suitable for long periods of data acquisition in smart cities. To make the networks of smart cities more reliable for sensitive information, the blockchain mechanism has been proposed. The key issues and challenges of WSNs in smart cities is efficiently scheduling the resources; leading to extending the network lifetime of sensors. In this paper, a linear network coding (LNC) for WSNs with blockchain-enabled IoT devices has been proposed. The consumption of energy is reduced for each node by applying LNC. The efficiency and the reliability of the proposed model are evaluated and compared to those of the existing models. Results from the simulation demonstrate that the proposed model increases the efficiency in terms of the number of live nodes, packet delivery ratio, throughput, and the optimized residual energy compared to other current techniques.  相似文献   

3.
Many extensive UAV communication networks have used UAV cooperative control. Wireless networking services can be offered using unmanned aerial vehicles (UAVs) as aerial base stations. Not only is coverage maximization, but also better connectivity, a fundamental design challenge that must be solved. The number of applications for unmanned aerial vehicles (UAVs) operating in unlicensed bands is fast expanding as the Internet of Things (IoT) develops. Those bands, however, have become overcrowded as the number of systems that use them grows. Cognitive Radio (CR) and spectrum allocation approaches have emerged as a potential approach for resolving spectrum scarcity in wireless networks, and hence as technological solutions for future generations, from this perspective. As a result, combining CR with UAVs has the potential to give significant benefits for large-scale UAV deployment. The paper examines existing research on the subject of UAV covering and proposes a multi-UAV cognitive-based error-free model for energy-efficient communication. Coverage maximization, power control, and enhanced connection quality are the three steps of the proposed model. To satisfy the desired signal-to-noise ratio, the covering zone efficacy is investigated as a function of the distance among UAVs stationed in a specific geographic region depending on multiple deployment configurations like as rural, suburban, and urban macro deployment scenarios of the ITU-R M.2135 standard (SNR).  相似文献   

4.
Spectrum has become a scant quantity with recent upsurge in the field of wireless communication. Cognitive radio network (CRN) alleviates the overgrowing spectrum scarcity and underutilization problem by adequately sharing the frequency bands between licensed and unlicensed users. CRN allows unlicensed users or secondary users (SUs) to opportunistically utilize the free portion of the spectrum allocated to the licensed users or primary users. The fundamental process in the formation of CRN is the rendezvous process where SUs meet on commonly available channels and establish reliable links for effective communication. Existing rendezvous solutions based on the assumption of a common control channel (CCC) among the SUs are infeasible and less efficient in the dynamic environment of CRNs. Therefore, channel hopping (CH) technique without CCC support, often referred to as blind rendezvous, is usually employed for accomplishing the rendezvous between SUs. This paper presents a comprehensive asynchronous symmetric rendezvous (CASR) algorithm that does not require time synchronization and guarantees rendezvous of SUs in finite time. CASR algorithm exploits the MAC address of SU as the unique identifier (ID) and generates CH sequence based on the dynamic manipulation of ID according to the number of available communication channels. Leveraging the unique ID of each SU, CASR algorithm succeeded in rendezvous guarantee while perpetuating a good time to rendezvous. The efficiency of CASR algorithm is estimated theoretically and verified through various simulation experiments. Simulation results affirm that CASR algorithm performs better in terms of average time-to-rendezvous as compared with existing rendezvous algorithms.  相似文献   

5.
With the development of autonomous/smart technologies and the Internet of Things (IoT), tremendous wireless sensor nodes (WSNs) are of great importance to realize intelligent mechanical engineering, which is significant in the industrial and social fields. However, current power supply methods, cable and battery for instance, face challenges such as layout difficulties, high cost, short life, and environmental pollution. Meanwhile, vibration is ubiquitous in machinery, vehicles, structures, etc., but has been regarded as an unwanted by-product and wasted in most cases. Therefore, it is crucial to harvest mechanical vibration energy to achieve in situ power supply for these WSNs. As a recent energy conversion technology, triboelectric nanogenerator (TENG) is particularly good at harvesting such broadband, weak, and irregular mechanical energy, which provides a feasible scheme for the power supply of WSNs. In this review, recent achievements of mechanical vibration energy harvesting (VEH) related to mechanical engineering based on TENG are systematically reviewed from the perspective of contact–separation (C-S) and freestanding modes. Finally, existing challenges and forthcoming development orientation of the VEH based on TENG are discussed in depth, which will be conducive to the future development of intelligent mechanical engineering in the era of IoT.  相似文献   

6.
In the field of smart communities, significant progress has been made in recent years. The objective of constructing smart communities is to improve the quality of life of their inhabitants. To accomplish this objective, technologies such as Internet of Things (IoT) and Artificial Intelligence (AI) were deployed. The data gathered and processed by IoT devices, particularly those with centralized control, are however susceptible to availability, integrity, and privacy risks. Due to its inherent properties of transparency, immutability, and underlying secure-by-design architecture, Distributed Ledger Technology (DLT) and Smart Contracts enable distributed, decentralized, automated workflows that can be incorporated to automate the management of the next generation of IoT networks. Using a potential use case, a conceptual architecture for securing smart communities with DLT is developed and explained. In this paper, a framework for IoT eco-systems is proposed that provides seamless integration between IoT and DLT to create a decentralized trusted architecture that ensures the trustworthiness of IoT eco-systems at design time and a trust reputation model based on the architecture to protect it at run-time. In addition, the initial implementation steps are described for this framework.  相似文献   

7.
In the Next Generation Radio Networks (NGRN), there will be extreme massive connectivity with the Heterogeneous Internet of Things (HetIoT) devices. The millimeter-Wave (mmWave) communications will become a potential core technology to increase the capacity of Radio Networks (RN) and enable Multiple-Input and Multiple-Output (MIMO) of Radio Remote Head (RRH) technology. However, the challenging key issues in unfair radio resource handling remain unsolved when massive requests are occurring concurrently. The imbalance of resource utilization is one of the main issues occurs when there is overloaded connectivity to the closest RRH receiving exceeding requests. To handle this issue effectively, Machine Learning (ML) algorithm plays an important role to tackle the requests of massive IoT devices to RRH with its obvious capacity conditions. This paper proposed a dynamic RRH gateways steering based on a lightweight supervised learning algorithm, namely K-Nearest Neighbor (KNN), to improve the communication Quality of Service (QoS) in real-time IoT networks. KNN supervises the model to classify and recommend the user’s requests to optimal RRHs which preserves higher power. The experimental dataset was generated by using computer software and the simulation results illustrated a remarkable outperformance of the proposed scheme over the conventional methods in terms of multiple significant QoS parameters, including communication reliability, latency, and throughput.  相似文献   

8.
Recently, Wireless sensor networks (WSNs) have become very popular research topics which are applied to many applications. They provide pervasive computing services and techniques in various potential applications for the Internet of Things (IoT). An Asynchronous Clustering and Mobile Data Gathering based on Timer Mechanism (ACMDGTM) algorithm is proposed which would mitigate the problem of “hot spots” among sensors to enhance the lifetime of networks. The clustering process takes sensors’ location and residual energy into consideration to elect suitable cluster heads. Furthermore, one mobile sink node is employed to access cluster heads in accordance with the data overflow time and moving time from cluster heads to itself. Related experimental results display that the presented method can avoid long distance communicate between sensor nodes. Furthermore, this algorithm reduces energy consumption effectively and improves package delivery rate.  相似文献   

9.
With the explosive advancements in wireless communications and digital electronics, some tiny devices, sensors, became a part of our daily life in numerous fields. Wireless sensor networks (WSNs) is composed of tiny sensor devices. WSNs have emerged as a key technology enabling the realization of the Internet of Things (IoT). In particular, the sensor-based revolution of WSN-based IoT has led to considerable technological growth in nearly all circles of our life such as smart cities, smart homes, smart healthcare, security applications, environmental monitoring, etc. However, the limitations of energy, communication range, and computational resources are bottlenecks to the widespread applications of this technology. In order to tackle these issues, in this paper, we propose an Energy-efficient Transmission Range Optimized Model for IoT (ETROMI), which can optimize the transmission range of the sensor nodes to curb the hot-spot problem occurring in multi-hop communication. In particular, we maximize the transmission range by employing linear programming to alleviate the sensor nodes’ energy consumption and considerably enhance the network longevity compared to that achievable using state-of-the-art algorithms. Through extensive simulation results, we demonstrate the superiority of the proposed model. ETROMI is expected to be extensively used for various smart city, smart home, and smart healthcare applications in which the transmission range of the sensor nodes is a key concern.  相似文献   

10.
The Internet of thing (IoT) is a growing concept for smart cities, and it is compulsory to communicate data between different networks and devices. In the IoT, communication should be rapid with less delay and overhead. For this purpose, flooding is used for reliable data communication in a smart cities concept but at the cost of higher overhead, energy consumption and packet drop etc. This paper aims to increase the efficiency in term of overhead and reliability in term of delay by using multicasting and unicasting instead of flooding during packet forwarding in a smart city using the IoT concept. In this paper, multicasting and unicasting is used for IoT in smart cities within a receiver-initiated mesh-based topology to disseminate the data to the cluster head. Smart cities networks are divided into cluster head, and each cluster head or core node will be responsible for transferring data to the desired receiver. This protocol is a novel approach according to the best of our knowledge, and it proves to be very useful due to its efficiency and reliability in smart cities concept because IoT is a collection of devices and having a similar interest for transmission of data. The results are implemented in Network simulator 2 (NS-2). The result shows that the proposed protocol shows performance in overhead, throughput, packet drop, delay and energy consumption as compared to benchmark schemes.  相似文献   

11.
In the last decade, IoT has been widely used in smart cities, autonomous driving and Industry 4.0, which lead to improve efficiency, reliability, security and economic benefits. However, with the rapid development of new technologies, such as cognitive communication, cloud computing, quantum computing and big data, the IoT security is being confronted with a series of new threats and challenges. IoT device identification via Radio Frequency Fingerprinting (RFF) extracting from radio signals is a physical-layer method for IoT security. In physical-layer, RFF is a unique characteristic of IoT device themselves, which can difficultly be tampered. Just as people’s unique fingerprinting, different IoT devices exhibit different RFF which can be used for identification and authentication. In this paper, the structure of IoT device identification is proposed, the key technologies such as signal detection, RFF extraction, and classification model is discussed. Especially, based on the random forest and Dempster-Shafer evidence algorithm, a novel ensemble learning algorithm is proposed. Through theoretical modeling and experimental verification, the reliability and differentiability of RFF are extracted and verified, the classification result is shown under the real IoT device environments.  相似文献   

12.
《工程(英文)》2017,3(4):460-466
Under intense environmental pressure, the global energy sector is promoting the integration of renewable energy into interconnected energy systems. The demand-side management (DSM) of energy systems has drawn considerable industrial and academic attention in attempts to form new flexibilities to respond to variations in renewable energy inputs to the system. However, many DSM concepts are still in the experimental demonstration phase. One of the obstacles to DSM usage is that the current information infrastructure was mainly designed for centralized systems, and does not meet DSM requirements. To overcome this barrier, this paper proposes a novel information infrastructure named the Internet of Energy Things (IoET) in order to make DSM practicable by basing it on the latest wireless communication technology: the low-power wide-area network (LPWAN). The primary advantage of LPWAN over general packet radio service (GPRS) and area Internet of Things (IoT) is its wide-area coverage, which comes with minimum power consumption and maintenance costs. Against this background, this paper briefly reviews the representative LPWAN technologies of narrow-band Internet of Things (NB-IoT) and Long Range (LoRa) technology, and compares them with GPRS and area IoT technology. Next, a wireless-to-cloud architecture is proposed for the IoET, based on the main technical features of LPWAN. Finally, this paper looks forward to the potential of IoET in various DSM application scenarios.  相似文献   

13.
In recent years, the application of a smart city in the healthcare sector via loT systems has continued to grow exponentially and various advanced network intrusions have emerged since these loT devices are being connected. Previous studies focused on security threat detection and blocking technologies that rely on testbed data obtained from a single medical IoT device or simulation using a well-known dataset, such as the NSL-KDD dataset. However, such approaches do not reflect the features that exist in real medical scenarios, leading to failure in potential threat detection. To address this problem, we proposed a novel intrusion classification architecture known as a Multi-class Classification based Intrusion Detection Model (M-IDM), which typically relies on data collected by real devices and the use of convolutional neural networks (i.e., it exhibits better performance compared with conventional machine learning algorithms, such as naïve Bayes, support vector machine (SVM)). Unlike existing studies, the proposed architecture employs the actual healthcare IoT environment of National Cancer Center in South Korea and actual network data from real medical devices, such as a patient’s monitors (i.e., electrocardiogram and thermometers). The proposed architecture classifies the data into multiple classes: Critical, informal, major, and minor, for intrusion detection. Further, we experimentally evaluated and compared its performance with those of other conventional machine learning algorithms, including naïve Bayes, SVM, and logistic regression, using neural networks.  相似文献   

14.
The Internet of Things (IoT) has numerous applications in every domain, e.g., smart cities to provide intelligent services to sustainable cities. The next-generation of IoT networks is expected to be densely deployed in a resource-constrained and lossy environment. The densely deployed nodes producing radically heterogeneous traffic pattern causes congestion and collision in the network. At the medium access control (MAC) layer, mitigating channel collision is still one of the main challenges of future IoT networks. Similarly, the standardized network layer uses a ranking mechanism based on hop-counts and expected transmission counts (ETX), which often does not adapt to the dynamic and lossy environment and impact performance. The ranking mechanism also requires large control overheads to update rank information. The resource-constrained IoT devices operating in a low-power and lossy network (LLN) environment need an efficient solution to handle these problems. Reinforcement learning (RL) algorithms like Q-learning are recently utilized to solve learning problems in LLNs devices like sensors. Thus, in this paper, an RL-based optimization of dense LLN IoT devices with heavy heterogeneous traffic is devised. The proposed protocol learns the collision information from the MAC layer and makes an intelligent decision at the network layer. The proposed protocol also enhances the operation of the trickle timer algorithm. A Q-learning model is employed to adaptively learn the channel collision probability and network layer ranking states with accumulated reward function. Based on a simulation using Contiki 3.0 Cooja, the proposed intelligent scheme achieves a lower packet loss ratio, improves throughput, produces lower control overheads, and consumes less energy than other state-of-the-art mechanisms.  相似文献   

15.
Riaz  N. Ghavami  M. 《Communications, IET》2009,3(9):1473-1487
One of the most promising uses for ultra-wideband (UWB) is wireless sensor networks (WSNs). Since WSNs offer a wide variety of services for different application areas, the UWB propagation channel characteristics of each application environment show fundamental differences from each other in many aspects. A reliable and energy-efficient multiple access scheme is thus required to coordinate the transmissions of sensor nodes in these various application channel environments. We develop an analytical framework for evaluating the performance of UWB time-hopping (TH), direct sequence (DS) and orthogonal frequency division multiplexing (OFDM) multiple access schemes with multi-node interference in the following UWB propagation channel environments that have a high importance for WSN applications: residential, office, suburban outdoor, industrial and agricultural. The objective is to determine the most appropriate multiple access scheme to be applied for a particular WSN application channel environment. Performance is evaluated in terms of the average information throughput efficiency, a relevant progress-related measure for multihop WSNs. The mathematical expression of this metric is derived in detail, and is used in numerical evaluations for assessing the performance of the three schemes operating under UWB propagation channel models of the various environments that are characterised by distinct channel parameters and specific valid distance ranges. TH-UWB is shown to be the most suitable multiple access scheme to be adopted for UWB WSNs. It outperforms both the DS-UWB and OFDM-UWB schemes for all application environments and is the most robust and energy efficient. OFDM-UWB is the poorest performing whereas DS-UWB provides similar performance to TH-UWB below a specific threshold number of interfering nodes.  相似文献   

16.
With the recent developments in the Internet of Things (IoT), the amount of data collected has expanded tremendously, resulting in a higher demand for data storage, computational capacity, and real-time processing capabilities. Cloud computing has traditionally played an important role in establishing IoT. However, fog computing has recently emerged as a new field complementing cloud computing due to its enhanced mobility, location awareness, heterogeneity, scalability, low latency, and geographic distribution. However, IoT networks are vulnerable to unwanted assaults because of their open and shared nature. As a result, various fog computing-based security models that protect IoT networks have been developed. A distributed architecture based on an intrusion detection system (IDS) ensures that a dynamic, scalable IoT environment with the ability to disperse centralized tasks to local fog nodes and which successfully detects advanced malicious threats is available. In this study, we examined the time-related aspects of network traffic data. We presented an intrusion detection model based on a two-layered bidirectional long short-term memory (Bi-LSTM) with an attention mechanism for traffic data classification verified on the UNSW-NB15 benchmark dataset. We showed that the suggested model outperformed numerous leading-edge Network IDS that used machine learning models in terms of accuracy, precision, recall and F1 score.  相似文献   

17.
Zhou  J. Thompson  J. 《Communications, IET》2008,2(6):742-752
Coexisting radio systems, often called cognitive radio (CR), have attracted much attention because of the lack of spectrum resources and the low usage statistics of existing spectrum allocations. Interference suppression and cancellation are seen as key technologies for enabling coexisting systems, and the application of multiple antennas might be one solution to tackle interference. Linear vector precoding for downlink of multiple input single output CR systems is addressed. The maximum ratio transmission, zero forcing, optimal interference-free, and optimal interference-constrained (IC) precoding algorithms in the sense of minimum mean squared error (MMSE) are presented. Then the authors compare and analyse these algorithms under different channel assumptions. The simulation results show that the proposed IC precoding algorithm can maximise the utilisation of multiple antennas and greatly improve the system performance.  相似文献   

18.
With the popularity of green computing and the huge usage of networks, there is an acute need for expansion of the 5G network. 5G is used where energy efficiency is the highest priority, and it can play a pinnacle role in helping every industry to hit sustainability. While in the 5G network, conventional performance guides, such as network capacity and coverage are still major issues and need improvements. Device to Device communication (D2D) communication technology plays an important role to improve the capacity and coverage of 5G technology using different techniques. The issue of energy utilization in the IoT based system is a significant exploration center. Energy optimization in D2D communication is an important point. We need to resolve this issue for increasing system performance. Green IoT speaks to the issue of lessening energy utilization of IoT gadgets which accomplishes a supportable climate for IoT systems. In this paper, we improve the capacity and coverage of 5G technology using Multiple Inputs Multiple Outputs (MU-MIMO). MU-MIMO increases the capacity of 5G in D2D communication. We also present all the problems faced by 5G technology and proposed architecture to enhance system performance.  相似文献   

19.
介绍了一种基于物联网的集装箱感知系统的实现和应用,为大规模商业应用提供了一种可行性方案。该系统利用RFID、无线数据通信和互联网等技术,实现无人干预下的集装箱自动识别、信息共享和智能管理。  相似文献   

20.
Wireless sensor networks (WSNs) consist of small nodes that are capable of sensing, computing, and communication. One of the greatest challenges in WSNs is the limitation of energy resources in nodes. This limitation applies to all of the protocols and algorithms that are used in these networks. Routing protocols in these networks should be designed considering this limitation. Many papers have been published examining low energy consumption networks. One of the techniques that has been used in this context is cross-layering. In this technique, to reduce the energy consumption, layers are not independent but they are related to each other and exchange information with each other. In this paper, a cross-layer design is presented to reduce the energy consumption in WSNs. In this design, the communication between the network layer and medium access layer has been established to help the control of efforts to access the line to reduce the number of failed attempts. In order to evaluate our proposed design, we used the NS2 software for simulation. Then, we compared our method with a cross-layer design based on an Ad-hoc On-demand Distance Vector routing algorithm. Simulation results show that our proposed idea reduces energy consumption and it also improves the packet delivery ratio and decreases the end-to-end delay in WSNs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号