共查询到16条相似文献,搜索用时 93 毫秒
1.
2.
针对柴油发电机组故障信号非平稳非线性特征参数难以提取的问题,结合深度学习的优势,提出一种基于变分模态分解(VMD)和深度卷积神经网络(CNN)相结合的故障诊断模型。为克服VMD算法中分解模态数较难确定的问题,采用峭度准则来选取最优分解模态数,将优化的VMD算法用于不同工况下的柴油发电机组声信号进行分解,转化为灰度图像作为网络输入,通过CNN自动进行特征提取,并利用训练集样本进行网络训练。为避免背景噪声和提高故障诊断精度,使用双传感器采集发电机组声信号。通过测试集的验证,表明该模型在对柴油发电机组的故障诊断中实现了不同工况下的可靠判别,进一步提升了故障判别的准确性。通过对比其他4种故障诊断方法,结果表明所提方法诊断精度更高且鲁棒性好。 相似文献
3.
针对直升机附件齿轮箱在有限多工况条件下故障特征提取难度大、识别准确率低等问题,提出一种结合变分模态分解(variationalmodedecomposition,简称VMD)与多尺度卷积神经网络(multi-scaleconvolutionalneural netwo,简称MCNN)的故障诊断方法。首先,对直升机附件齿轮箱进行地面实验和信号采集,对原始信号进行滤波、降噪等预处理;其次,利用VMD将信号分解为若干个固有模态(intrinsic mode functions,简称IMF),依据齿轮副频率特性对分解模态进行重构与归一化,增强微弱的高频故障特征;最后,将重构信号的每个分量视作不同尺度,经多尺度卷积神经网络进行多尺度特征提取并融合,由指数归一化分类器给出识别的故障类别。实验结果表明,所提方法能够有效增强信号故障特征,挖掘多工况条件下信号的差异性与同一性,在直升机附件齿轮箱振动故障诊断中平均准确率为97.25%。 相似文献
4.
5.
6.
针对行星齿轮箱中各部件所激起的振动成分混叠、早期故障特征经常被较强的各级齿轮谐波成分以及环境噪声所湮没的问题,提出一种多共振分量融合卷积神经网络(multi-resonance component fusion based convolutional neural network,简称MRCF-CNN)的行星齿轮箱故障诊断方法。首先,对振动信号进行共振稀疏分解,得到包含齿轮谐波成分的高共振分量和可能包含轴承故障冲击成分的低共振分量;其次,构建多共振分量融合卷积神经网络,将得到的高、低共振分量和原始振动信号进行自适应的特征级融合,通过有监督的方式训练模型并进行行星齿轮箱故障诊断。对行星齿轮箱实验数据的分析结果表明,该方法能够有效分类行星齿轮箱中滚动轴承和齿轮的故障,成功对行星齿轮箱故障进行诊断,同时能够进一步增强卷积神经网络对振动信号所蕴含的故障信息的辨识能力。 相似文献
7.
基于经验模态分解和深度卷积神经网络的行星齿轮箱故障诊断方法 总被引:1,自引:0,他引:1
行星齿轮箱振动信号具有非平稳特性,需要一定的先验知识和诊断专业知识设计和解释特征从而实现故障诊断。为了实现行星齿轮箱的智能诊断,提出一种基于经验模态分解(Empirical mode decomposition,EMD)和深度卷积神经网络(Deep convolutional neural network,DCNN)的智能故障诊断方法。首先对振动信号进行经验模态分解得到内禀模式函数(Intrinsic mode function, IMF);然后利用DCNN融合特征信息明显的IMF分量,并自动提取特征;最后,将特征用于分类器分类识别,从而实现行星齿轮箱故障诊断的自动化。试验结果表明:该方法能准确、有效地对行星齿轮箱的工作状态和故障类型进行分类。 相似文献
8.
9.
10.
为解决齿轮箱故障振动信号信噪比低、故障特征提取难的问题,提出了基于参数优化变分模态分解(VMD)的齿轮箱故障特征提取方法。首先,以分解结果的局部极小包络熵最小为目标,利用果蝇算法搜寻VMD分解参数K和α的最优组合;将原始信号分解成若干IMF分量,从中选择包络熵较小的分量进行信号重构,并对重构信号进行包络解调运算,从重构信号的包络谱中提取故障频率特征。结果表明,利用此方法对实测信号进行处理,成功降噪、提取齿轮箱故障特征,并且比利用经验模态分解方法降噪效果更好,提取的故障特征更加明显。 相似文献
11.
为了解决齿轮箱的故障诊断问题,提出了一种基于最小熵反褶积(Minimum Entropy Deconvolution,MED)和支持向量机(Support Vector Machine,SVM)的齿轮箱故障诊断方法。该方法首先对齿轮箱振动加速度信号进行MED降噪处理,对降噪后的信号在幅域、频域和能量域进行特征参量提取,建立特征向量,以此作为输入建立多分类支持向量机,通过交叉验证方法优化模型参数,判断齿轮箱的故障类型。实测齿轮箱振动信号的故障诊断结果表明,该方法能有效识别多种齿轮和轴承的故障类型,优化模型参,数有助于提高故障识别准确率。 相似文献
12.
强噪环境下,复合故障特征提取难度更大,VMD(Variational Mode Decomposition)被大量应用于齿轮箱故障诊断中;但是它属于参数型分解方法,K过大或过小都会导致过分解或欠分解现象,因此分解的层数需要自适应的确定。提出了一种多点峭度和VMD的复合故障特征提取方法。考虑到多点峭度可以提取多故障的冲击性周期的个数;周期性冲击个数决定VMD的分解层数K,通过VMD处理后,进一步通过FFT确定故障特征。所提出的自适应复合故障特征提取方法和EEMD(En?semble Empirical Mode Decomposition)对比分析,验证了它可以克服模态混叠的特征,通过对实测性信号处理进一步确定了此方法的有效性。最终确定了齿轮剥落和轴承滚珠等复合故障特征。 相似文献
13.
14.
《机械传动》2017,(3):160-165
针对实际中工况复杂难以提取齿轮故障特征频率的问题,提出一种变分模态分解(Variational Mode Decomposition,VMD)与多特征融合的齿轮故障诊断方法。首先,对机械振动信号进行VMD分解并得到一系列的模态,其次,计算高频段的前4个模态的排列熵(Permutation Entropy,PE)和能量,最后,将排列熵和能量构成的高维特征向量作为最小二乘支持向量机(Least Squares Support Vector Machine,LS-SVM)的输入,对齿轮故障类型进行模式识别。试验结果表明:VMD可以较好地将复杂多分量信号各成分分开;排列熵和能量特征可以从不同尺度揭示齿轮故障信息;基于VMD与多特征融合的智能故障诊断方法识别精度高,可以为齿轮故障预警和严重程度提供参考。 相似文献
15.
针对齿轮箱的滚动轴承故障信号因噪声干扰,难以进行有效提取的问题,提出了基于变分模态分解与快速谱峭图相结合的轴承故障特征提取方法。首先,利用变分模态分解(Variational Mode Decomposition,VMD)将振动信号分解成若干个本征模态分量(Intrinsic Mode Function,IMF),通过相关峭度计算选取故障信息最突出的分量信号;然后,利用快速谱峭图自适应地确定带通滤波;最后,对滤波后的信号进行平方包络谱分析,提取出故障信息。通过公开数据分析和齿轮箱轴承故障实验,证明了该方法的有效性和可行性。 相似文献
16.
随机共振(Stochastic resonance,SR)在处理实测轴承故障信号时需满足绝热近似条件,即需满足小参数信号(信号幅值、信号频率、噪声强度远小于1),这一问题极大地制约了对实测振动信号的检测,针对这一现象,提出基于遗传算法的自适应变尺度随机共振与变分模态分解(Variational mode decomposition,VMD)的轴承故障诊断方法。首先,设定合适的压缩比R将实测信号进行压缩,使其满足小参数条件;然后,定义信号的输出信噪比为目标函数,利用遗传算法(Genetic algorithm,GA)对变尺度随机共振的结构参数a和b进行同步优化,选取最优值代入变尺度随机共振中对实测信号进行消噪处理;最后,将降噪信号进行VMD分解,从分解得到的各IMF分量的频谱图中识别轴承故障特征频率。对实验数据分析的结果表明,该方法可有效地提高轴承故障诊断的准确度。 相似文献