共查询到20条相似文献,搜索用时 12 毫秒
1.
《材料科学技术学报》2019,35(9):2027-2037
Thin-wall structures of Ti-6Al-4V were fabricated by low-power pulsed laser directed energy deposition. During deposition, consistent with prior reports, columnar grains were observed which grew from the bottom toward the top of melt pool tail. This resulted in a microstructure mainly composed of long and thin prior epitaxial β columnar grains (average width ≈200 μm). A periodic pattern in epitaxial growth of grains was observed, which was shown to depend upon laser traverse direction. Utilizing this, a novel means was proposed to determine accurately the fusion boundary of each deposited layer by inspection of the periodic wave patterns. As a result it was applied to investigate the influence of thermal cycling on microstructure evolution. Results showed that acicular martensite, α' phase, and a small amount of Widmanstätten, α laths, gradually converted to elongated acicular α and a large fraction of Widmanstätten α laths under layer-wise thermal cycling. Tensile tests showed that the yield strength, ultimate tensile strength and elongation of Ti-6Al-4V thin wall in the build direction were 9.1%, 17.3% and 42% higher respectively than those typically observed in forged solids of the same alloy. It also showed the yield strength and ultimate tensile strength of the transverse tensile samples both were ˜13.3% higher than those from the build direction due to the strengthening effect of a large number of vertical β grain boundaries, but the elongation was 69.7% lower than that of the build direction due to the uneven grain deformation of β grains. 相似文献
2.
3.
4.
目的 探究选区激光熔化技术工艺参数线间距对钛合金Ti–6Al–4V增材试件力学性能的影响。方法 通过SLM成形技术,以钛合金粉末为原材料、以线间距为变量制备增材成形试件,通过拉伸试验、断口形貌分析以及表面硬度测量获取不同线间距工艺参数条件下钛合金成形试件力学性能表现较好的较优解。结果不同线间距条件下成形试件拉伸曲线差异较大,线间距为0.05mm和0.10mm时,成形试件拉伸曲线表现较好,成形试件断口组织撕裂均具有连续性,韧窝结构明显,具有一定塑性。试件成形过程受氧化影响,其拉伸性能与硬度性能表现不一致。结论 试验最终工艺参数如下:曝光时间为80μs、点间距为40μm、线间距为0.05mm,SLM成形试件获得了较高的表面硬度,试件断口组织撕裂连续性较为明显,韧窝结构较大,断口界面缺陷较少,力学性能较优。 相似文献
5.
In this work, the current understanding and development of friction-stir welding and processing of Ti-6Al-4V alloy are briefly reviewed. The critical issues of these processes are addressed, including welding tool materials and design, tool wear, processing temperature, material flow, processing window and residual stresses. A particular emphasis is given to microstructural aspects and microstructure-properties relationship. Potential engineering applications are highlighted. 相似文献
6.
The behaviour of oxidation at elevated tem-peratures and fretting in the laser-alloyed layer ofTi-6Al-4V with the addition of Pr was studied.The results show that the addition of Pr changes thestructure of oxide scale of Ti-6Al-4V,controls theshort-range diffusion of oxygen to thescale/substrate interface and increases the adhe-sion and ductility of the scale,thus changing theoxidation kinetics and considerably reducingoxidation rate.The analysis of fretting test showsthat the existence of high hardness layer in the al-loyed zone,fine dendrites perpendicular to the sur-face of the high hardness layer and the oxide scaleproduced during fretting at elevated temperaturesare all beneficial to the improvement of wear resist-ance. 相似文献
7.
Dechun Ren Shujun Li Hao Wang Wentao Hou Yulin Hao Wei Jin Rui Yang R. Devesh K. Misra Lawrence E. Murr 《材料科学技术学报》2019,35(2):285-294
Porous titanium and its alloys have been considered as promising replacement for dense implants, as they possess low elastic modulus comparable to that of compact human bones and are capable of providing space for in-growth of bony tissues to achieve a better fixation. Recently, the additive manufacturing (AM) method has been successfully applied to the fabrication of Ti-6Al-4V cellular meshes and foams. Comparing to traditional fabrication methods, the AM method offers advantages of accurate control of complex cell shapes and internal pore architectures, thus attracting extensive attention. Considering the long-term safety in the human body, the metallic cellular structures should possess high fatigue strength. In this paper, the recent progress on the fatigue properties of Ti-6Al-4V cellular structures fabricated by the AM technique is reviewed. The various design factors including cell shapes, surface properties, post treatments and graded porosity distribution affecting the fatigue properties of additive manufactured Ti-6Al-4V cellular structures were introduced and future development trends were also discussed. 相似文献
8.
激光冲击处理对Ti6Al4V力学性能的影响 总被引:3,自引:0,他引:3
通过对钛合金Ti6Al4V的激光冲击处理,研究了激光冲击处理工艺对钛合金Ti6Al4V力学性能的影响.实验表明:激光冲击处理能有效提升Ti6Al4V的力学性能,在激光功率密度由1.15GW/cm2增加到2.31GW/cm2过程中,其冲击波峰值压力线性增加,表面最大残余压应力也相应增大,最高达-264MPa,表面硬化层的显微硬度高达510Hv,硬化层深度约为0.25mm,经过激光冲击处理后硬度相对于原始钛板提高了64%,随着激光能量的增加,冲击区域的抗拉强度极大增强,塑性降低. 相似文献
9.
陈伟 《真空科学与技术学报》2021,41(11):1110-1115
退火处理是改善钛合金显微组织,提高力学性能及超塑成形性能的一种重要工艺。使用真空退火炉在850℃-950℃温度区间内对锻态Ti-6Al-4V合金的进行了高温退火处理,研究了退火态Ti-6Al-4V合金微观组织演变及其在温度为900℃,应变速率为0.01 s-1时的超塑拉伸性能。结果表明,锻态Ti-6Al-4V合金的初生α晶粒尺寸随真空退火温度的升高而减小,β相比例随真空退火温度升高而增大。当真空退火温度为910℃时,Ti-6Al-4V合金的晶粒尺寸和α相与β相分布较为均匀,其超塑拉伸试验结果表明,该合金表现出最佳的超塑拉伸性能,其拉伸延伸率达到785%,峰值应力仅为26.8 MPa。 相似文献
10.
Microstructural changes in the surface layer of Ti-6Al-4V alloy after sliding wear in vacuum have been studied by means of scanning and transmission electron microscopy (SEM and TEM). The wear rates of Ti-6Al-4V alloy in vacuum were measured under different sliding velocities and loads. The experimental results showed that a severely deformed layer with a grain size of 50–100 nm and thickness about 70 μm was formed underneath the worn surface. Under the slower sliding velocities, the substructure of the layer had a high dislocation density, while under higher sliding velocities, twins were found to exist in the substructure. A process by which the deformed layer formed has been proposed and the deformation of materials at the contacting spots of the Ti-6Al-4V sample is discussed. 相似文献
11.
An Al-12 Si/Al-3.5 Cu-1.5 Mg-1 Si bimetal with a good interface was successfully produced by selective laser melting(SLM).The SLM bimetal exhibits four successive zones along the building direction:an Al-12 Si zone,an interfacial zone,a texture-strengthening zone and an Al-Cu-Mg-Si zone.The interfacial zone(<0.2 mm thick)displays an increasing size of the cells composed of eutectic Al-Si and a discontinuous cellular microstructure,resulting in the lowest hardness of the four zones.The texturestrengthening zone(around 0.3 mm thick)shows a remarkable variation of the hardness and<001>fiber texture.Electron backscatter diffraction analysis shows that the grains grow gradually from the interfacial zone to the Al-Cu-Mg-Si zone along the building direction.Additionally,a strong<001>fiber texture develops at the Al-Cu-Mg-Si side of the interfacial zone and disappears gradually along the building direction.The bimetal exhibits a room temperature yield strength of 267±10 MPa and an ultimate tensile strength of 369±15 MPa with elongation of 2.6±0.1%,revealing the potential of selective laser melting in manufacturing dissimilar materials. 相似文献
12.
采用TiZrNiCu合金作为中间层材料研究了Ti3Al基合金与Ti-6Al-4V合金的瞬间液相(TLP)扩散连接接头成分、组织转变及显微硬度.研究结果表明,连接温度和连接时间对接头成分和组织有较大的影响.随着连接温度的提高和连接时间的延长,接头中元素分布趋于均匀,连接区宽度增大.连接温度为850℃和900℃时,液相的残留使得接头中存在Ti-Cu金属间化合物.当连接温度为950℃,连接时间为30min时,等温凝固的完成使Ti-Cu金属间化合物从接头中消失.随着连接温度的提高和连接时间的延长,接头连接区硬度降低.当连接温度为950℃,连接时间为30min时,接头硬度分布较均匀. 相似文献
13.
The use of porous structures is gaining popularity in biomedical implant manufacture fields due to its ability to promote increased osseointegration and cell proliferation. Selective laser melting (SLM) is a metal additive manufacturing (MAM) technique capable of producing the porous structure. Adjusting the parameter of scan line spacing is a simple and fast way to gain porous structures in SLM process. By using the medical alloy of Ti6Al4V, we systematically study the influence of the scan line spacing on pore characteristics and mechanical properties of porous implant for the first time. The scanning electron microscope (SEM) results show that the porous Ti6Al4V implants with interconnected pore sizes which ranges from 250 to 450 μm is appropriate for compact bone. The compression strength and modulus of the porous Ti6Al4V implants decrease with the increase of the scan line spacing, and two equations by fitting the data have been established to predict their compression properties. The compressive deformation of the porous Ti6Al4V implants presented an adiabatic shear band (ASB) fracture, which is similar to dense Ti6Al4V owing to the dense thin wall structures. The ability to create both high porosity and strong mechanical properties implants opens a new avenue for fabricating porous implants which is used for load-bearing bone defect repair and regeneration. 相似文献
14.
Nickel-titanium shape memory alloys made by selective laser melting:a review on process optimisation
Selective laser melting (SLM) is a mainstream powder-bed fusion additive manufacturing (AM) process that creates a three-dimensional (3D) object using a high power laser to fuse fine particles of various metallic powders such as copper, tool steel, cobalt chrome, titanium, tungsten, aluminium and stainless steel. Over the past decade, SLM has received significant attention due to its capability in producing dense parts with superior mechanical properties. As a premier shape memory alloy, the nickel-titanium (NiTi) shape memory alloy is attractive for a variety of biomedical applications due to its superior mechanical properties, superelasticity, corrosion resistance and biocompatibility. This paper presents a comprehensive review of the recent progress in NiTi alloys produced by the SLM process, with a particular focus on the relationship between processing parameters, resultant microstructures and properties. Current research gaps, challenges and suggestions for future research are also addressed.The full text can be downloaded at https://link.springer.com/article/10.1007/s40436-021-00376-9 相似文献
15.
Yong LIU Jingchuan ZHU Zhongda YIN Mingwei LI School of Materials Science Engineering Harbin Institute of Technology Harbin China 《材料科学技术学报》2004,20(3):292-294
The effect of triple annealing on stress relaxation of Ti-6Al-4V alloy as well as the microstructure after stress relaxation werestudied. The results showed that triple annealing treatment enhanced the resistance of stress relaxation performance, andwhen the temperature was rising, this effect became notable. The stress relaxation deformation mechanism is of dislocationcreep at 400℃ and recovery creep at 600℃. 相似文献
16.
A.Q. Sui B.J. Liu C.H. Liu D.S. Wang E.L. Wang 《Materialwissenschaft und Werkstofftechnik》2021,52(12):1319-1327
The present work shows that the effect of several heat treatments on the corrosion resistance and mechanical properties of Ti6Al4V processed by selective laser melting (SLM). The microstructure of Ti6Al4V alloy produced by selective laser melting exhibited bulky prior β columnar grains, and a large amount of fine acicular martensites α′ were observed inside the prior β columnar grains. The acicular martensitic α′ were transformed to a mixture of α and β after heat treatment, and the grain size increases with the increase of heat-treated temperature. The results of 3.5 wt% NaCl solution electrochemical corrosion test showed that the heat-treated samples possess a higher corrosion resistance than the as-received sample. Among of them, the sample after heat-treated at 730 °C exhibited best corrosion resistance and excellent fracture strain. The sample heat treated at 1015 °C showed worst mechanical properties due to the formation of Widmanstätten structure. 相似文献
17.
The titanium alloys are potential materials for high temperature applications in turbine components due to their very high temperature strength and lightweight properties. However, hot corrosion is a life-limiting factor when Ti alloys are exposed to different chemical environments at high temperature. In the present paper, hot corrosion behavior of Ti-6Al-4V (Ti-31) alloy in different salt environments viz. air, Na2SO4-60% V2O5 and Na2SO4-50% NaCl at 750 °C was studied. The parabolic rate constants were calculated for different environments from the thermo-gravimetric data obtained for the samples and they show that corrosion rate is minimum in air when compared to chemical environment. The scale formed on the samples upon hot corrosion was characterized by using X-ray diffraction (XRD), SEM, and EDAX analysis to understand the degradation mechanisms. 相似文献
18.
Ling Ren ;Zheng Ma ;Mei Li ;Yu Zhang ;Weiqiang Liu ;Zhenhua Liao ;Ke Yang 《材料科学技术学报》2014,30(7):699-705
Surgical implant-associated bacterial infection is becoming a serious clinical problem.A series of copper-bearing titanium alloy,Ti—6AI—4V—xCu(x = 1,3,5 wt%),were fabricated in the present study in order to reduce the hazard of the bacterial infection problem by means of the strong antibacterial ability of Cu element.The metallography,X-ray diffraction,antibacterial ability,corrosion resistance and cytotoxicity of Ti—6AI—4V—xCu alloys were preliminarily studied with comparison to the commercial medical Ti—6AI—4V alloy.The Ti—6AI—4V—xCu alloys showed obvious antibacterial abilities with good corrosion resistance and cytocompatibility,and the antibacterial role was enhanced with increasing Cu content,which has significant potential for clinical applications as surgical implant materials. 相似文献
19.
Fretting fatigue tests of Ti‐6Al‐4V on Ti‐6Al‐4V have been conducted to determine the influence of stress amplitude and mean stress on life. The stress ratio was varied from R=−1 to 0.8. Both flat and cylindrical contacts were studied using a bridge‐type fretting fatigue test apparatus operating either in the partial slip or mixed fretting regimes. The fretting fatigue lives were correlated to a Walker equivalent stress relation. The influence of mean stress on fretting fatigue crack initiation, characterized by the value of the Walker exponent, is smaller compared with plain fatigue. The fretting fatigue knockdown factor based on the Walker equivalent stress is 4. Formation of fretting cracks is primarily associated with the tangential force amplitude at the contact interface. A simple fretting fatigue crack initiation metric that is based on the strength of the singular stress field at the edge of contact is evaluated. The metric has the advantage in that it is neither dependent on the coefficient of friction nor the location of the stick/slip boundary, both of which are often difficult to define with certainty a priori. 相似文献
20.
Study on the flow properties of Ti-6Al-4V powders prepared by radio-frequency plasma spheroidization
Wen-Hou Wei Lin-Zhi Wang Tian Chen Xuan-Ming Duan Wei Li 《Advanced Powder Technology》2017,28(9):2431-2437
Spherical Ti-6Al-4V powders were prepared using radio-frequency plasma spheroidization. A laser particle size analyser, a scanning electron microscope, an X-ray diffractometer and a Freeman FT4 powder rheometer were used to analyse the granulometric parameters, micro-morphologies, phase constitutions and flow properties of the raw and the spheroidized powders, respectively. The spheroidized powders exhibited an almost 100% degree of sphericity, smooth surfaces, favourable dispersion and narrow particle size distribution under appropriate plasma technological parameters. The average particle size of the spheroidized powders increased slightly as compared with that of the raw powders. In addition, the spheroidized powders exhibited higher conditioned bulk density and improved flow properties (including the dynamic flow properties, aeration, compressibility, permeability and shear properties) as compared with those of the raw powders. 相似文献