共查询到20条相似文献,搜索用时 15 毫秒
1.
自然场景文本检测与识别研究对于从场景中获取信息有重要意义,而深度学习技术有助于提高文本检测与识别的能力.主要对基于深度学习的自然场景文本检测与识别方法和其研究进展进行整理分类、分析和总结.首先论述自然场景文本检测与识别的相关研究背景及主要技术研究路线;然后,根据自然场景文本信息处理的不同阶段,进一步介绍文本检测模型、文本识别模型和端到端的文本识别模型,并阐述和分析每类模型方法的基本思路和优缺点;另外,列举了常见公共标准数据集以及性能评估指标和方法,并对不同模型相关实验结果进行了对比分析;最后总结基于深度学习的自然场景文本检测与识别技术面临的挑战和发展趋势. 相似文献
2.
针对自然场景文本检测中存在的文本检测信息缺失、漏检的问题,提出了嵌入注意力机制的自然场景文本检测方法。利用Faster-RCNN目标检测网络和特征金字塔网络(FPN)作为基本框架;在区域建议网络(RPN)中嵌入注意力机制并依据文本的特点改进锚点(anchor)的设置,精确了文本候选区域;重新设定损失函数的作用范围。实验结果表明,该方法有效地保证文本检测信息的完整性,较之现有方法明显地提高了文本检测的召回率和准确率,能够应用于文本检测的实际任务中。 相似文献
3.
自然场景乌金体藏文文本信息作为高度浓缩的高层语义信息,不仅具有较大的研究和实用价值,而且可以用于协助藏文场景文本理解领域的研究.目前针对自然场景下乌金体藏文的检测与识别的相关研究甚少,本文在人工收集的自然场景乌金体藏文图像数据集的基础上,对比了目前常见的文字检测算法在自然场景乌金体藏文上的检测性能以及在不同特征提取网络下基于序列的文字识别算法CRNN在自然场景乌金体藏文图像数据集上的识别准确率并分析了在314张真实自然场景下乌金体藏文识别出错的特殊例子.实验表明本文在文字检测阶段采用的可微分的二值化网络DBNet在测试集上具有更好的检测性能,该方法在测试集上的准确率、召回率、F1值分别达到了0.89、0.59、0.71;在文字识别阶段采用MobileNetV3 Large作为特征提取网络时,CRNN算法在测试集上的识别准确率最高,达到了0.4365. 相似文献
4.
近些年来,卷积神经网络算法在自然场景文本检测效果上较传统算法已经有了很大提升,但如何有效处理神经网络输出层候选框仍然值得研究。非极大值抑制算法(non-maximum suppression,NMS)通过选择最高置信度候选框作为检测结果,往往容易对较长文本以及混叠文本区域检测失效。考虑到该问题,可以将候选框集合进行排序滤波与融合计算,得到更准确的候选框,有效减少上述检测失效的情况。这种方法,可以直接嵌入原有方法中,而不需要改变网络结构或者增加任何训练量。通过在公开数据集上进行实验,对比其他方法,该方法有较大优势。 相似文献
5.
随着深度学习技术在计算机视觉领域的发展,场景文本检测与文字识别技术也有了突破性的进展.受到自然场景下极端光照、遮挡、模糊、多方向多尺度等情况的影响,无约束的场景文本检测与识别仍然面临着巨大的挑战.从深度学习的角度对场景文本检测和文字识别技术进行深入研究,总结出在文本检测技术中将基于分割的方法与回归的方法优势相结合,可以... 相似文献
6.
场景文本检测是场景文本识别中重要的一步,也是一个具有挑战性的问题。不同于一般的目标检测,场景文本检测的主要挑战在于自然场景图像中的文本具有任意方向,小的尺寸,以及多种宽高比。论文在TextBoxes[8]的基础上进行改进,提出了一个适用于任意方向文本的检测器,命名为OSTD(Oriented Scene Text Detector),可以有效且准确地检测自然场景中任意方向的文本。论文在公共数据集上对提出OSTD的进行评估。所有实验结果都表明,无论在准确性,还是实时性方面OSTD都是极具竞争力的方法。在1024×1024的ICDAR2015 Incidental Text数据集[16]上,OSTD的F-Measure=0.794,FPS=10.7。 相似文献
7.
传统的自然场景文字检测方法所采用的手工设计特征在应对复杂自然场景时缺乏鲁棒性。针对复杂自然场景中的多方向文字检测问题,提出了一种新的基于深度学习文字检测方法,采用全卷积网络(Fully Convolutional Networks,FCN)并融合多尺度文字特征图,结合语义分割的方法分割文字候选区域,利用分割得到的文字候选区域直接获取文字候选检测框并进行扩大补偿处理,对文字候选检测框进行后处理得到最终检测结果。该方法在ICDAR2013、ICDAR2015标准数据集进行了测评,实验结果表明该方法相比一些最新方法取得了更好的性能。 相似文献
8.
9.
针对自然场景下多方向文本对象,提出一种基于深度学习的文本检测方法.该方法在设计锚框时剥离锚框的方向特征但保留其长宽比特征,在覆盖相同长宽比范围时,锚框设计数量减少,从而缓解采样密集时正负样本类别失衡的影响.在方法的后处理阶段,提出一种边界框校准算法,该算法利用最大稳定极值区域(MSER)获取字符边缘信息,通过基于规则的... 相似文献
10.
11.
越南语字符由拉丁字符结合变音符号组成,由于变音符号的存在易导致注意力漂移,并且越南语文字字符类别较多,字符间差异性较小,部分字符仅为变音符号的差异,使得越南文字的识别具有挑战性。本文在解耦注意力网络(Decoupled attention network, DAN)的基础上,设计了视觉特征与序列特征融合模块(Visual feature and sequence feature fusion module, VSFM),分别利用双向门控循环单元(Bidirectional gated recurrent unit, Bi-GRU)在水平方向和竖直方向进行序列建模,进一步缓解注意力漂移,增强变音符号与拉丁字符间的关联性。然后设计了增强型解耦文本解码器模块(Enhanced decoupled text decoder module, ETDM),在解码器中分类时结合了更多的特征信息,可以更加有效地识别相似字符。一系列的实验验证了本文提出方法的有效性。 相似文献
12.
对文字检测和识别技术进行了全面的介绍。介绍了自然场景文字识别技术的研究背景、应用领域、技术难点等;介绍了场景文字识别的预处理技术及流程,介绍了近年来出现的基于深度学习的通用检测网络、维吾尔文和中英文的深度学习文字检测网络、场景文字识别深度学习网络、端到端场景文字检测与识别深度学习网络,并总结了各类网络的结构特点、优势、局限性、应用场景以及实现成本,接着进行了综合分析;最后介绍了公开数据集,并探讨了场景文字识别技术的发展趋势及可能的研究方向。 相似文献
13.
针对复杂的自然场景下文本较难识别的情况,特别是对不规则文本的识别仍很具挑战性,提出了一种具有注意机制的双监督网络.考虑到在现实世界中阅读单词时通常不会在脑海中纠正他,而是调整焦点和视觉范围.在特征提取过程中利用几何结构可调的可变形卷积层结合文本注意模块,强制模型专注于文本区域,无需对不规则的文本进行位置纠正.该文的总体... 相似文献
14.
目前,基于深度学习的自然场景文本检测在复杂的背景下取得很好的效果,但难以准确检测到小尺度文本.本文针对此问题提出了一种基于特征融合的深度神经网络,该网络将传统深度神经网络中的高层特征与低层特征相融合,构建一种高级语义的神经网络.特征融合网络利用网络高层的强语义信息来提高网络的整体性能,并通过多个输出层直接预测不同尺度的文本.在ICDAR2011和ICDAR2013数据集上的实验表明,本文的方法对于小尺度的文本,定位效果显著.同时,本文所提的方法在自然场景文本检测中具有较高的定位准确性和鲁棒性,F值在两个数据集上均达到0.83. 相似文献
15.
自然场景文本检测对于机器理解场景等有着重要作用。近年来,随着深度学习的发展,自然场景文字检测方法也日新月异,取得了很好的检测效果。分析、总结了近年来基于深度学习的场景文字检测方法,将其归纳分类为基于回归、基于分割,以及两者混合三种类型,并对各类检测方法的优缺点进行了对比分析。介绍了场景文本检测性能指标及常用的公开数据集以及下载方式。对场景文字检测领域研究进行总结和展望,有望为深度学习场景文本检测方法提供新的研究方向。 相似文献
16.
首先阐述了文本定位的基本流程,然后列举了现有的主要文本定位方法,分析了基于区域、纹理、边缘、角点的文本定位方法和机器学习的文本定位方法的优缺点,详细说明了文本区域验证和文本块区域合并的方法,最后总结了各种文本定位方法。 相似文献
17.
提出了一种结合卷积神经网络和递归神经网络的有效的端到端场景文本识别方法。首先使用特征金字塔(FPN)提取图像的多尺度特征,然后将引入残差网络(ResNet)的深度双向递归网络(Bi-LSTM)对这些特征进行编码,获得文本序列特征,进而引入注意力机制(Attention)对文本序列特征进行解码达到识别效果。在ICDAR2013、ICDAR2015数据集实验验证了该算法的有效性,该方法不仅降低了训练难度,而且提升了网络的收敛速度,提高了文本识别准确率。该方法的有效性在ICDAR2013、ICDAR2015数据集上得到了充分验证。 相似文献
18.
建立自然灾害预测模型,对自然灾害进行预测和分析,有利于提升防灾减灾的技术水平.基于关联规则和Web文本挖掘技术提出自然灾害预测系统的设计方案及实现方法.该系统利用成熟开源的爬虫框架从权威的灾害信息发布平台中定向抓取非结构化的自然灾害信息,通过中文分词技术进行数据清理将其整理成结构化的自然灾害数据库,并利用改进的关联规则算法从中挖掘出自然灾害事件的关联规则,进而可通过实时监控关联规则的前端信息,实现对自然灾害事件的预测.试运行结果表明该系统能有效挖掘出自然灾害信息的关联规则,并具有较高置信度. 相似文献
19.
随着深度学习技术的发展,自然场景文本检测的性能获得了显著的提升.但目前仍然存在两个主要的挑战:一是速度和准确度之间的权衡,二是对任意形状的文本实例的检测.本文采用基于分割的方法高效准确的检测任意形状场景文本.具体来说,使用具有低计算成本的分割头和简洁高效的后处理,分割头由特征金字塔增强模块和特征融合模块组成,前者可以引入多层次的信息来指导更好的分割,后者可以将前者给出的不同深度的特征集合成最终的特征进行分割.本文采用可微二值化模块,自适应地设置二值化阈值,将分割方法产生的概率图转换为文本区域,从而提高文本检测的性能.在标准数据集ICDAR2015和Total-Text上,本文提出的方法使用轻量级主干网络如ResNet18在速度和准确度方面都达到了可比较的结果. 相似文献
20.
自然场景图像中的文本检测综述 总被引:3,自引:0,他引:3
本文对自然场景文本检测问题及其方法的研究进展进行了综述.首先,论述了自然场景文本的特点、自然场景文本检测技术的研究背景、现状以及主要技术路线.其次,从传统文本检测以及深度学习文本检测的视角出发,梳理、分析并比较了各类自然场景文本检测方法的优缺点,并介绍了端对端文本识别技术.再次,论述了自然场景文本检测技术所面临的挑战,探讨了相应的解决方案.最后,本文列举了测试基准数据集、评估方法,将最具代表性的自然场景文本检测方法的性能进行了比较,本文还展望了本领域的发展趋势. 相似文献