首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
COVID-19 has been considered one of the recent epidemics that occurred at the last of 2019 and the beginning of 2020 that world widespread. This spread of COVID-19 requires a fast technique for diagnosis to make the appropriate decision for the treatment. X-ray images are one of the most classifiable images that are used widely in diagnosing patients’ data depending on radiographs due to their structures and tissues that could be classified. Convolutional Neural Networks (CNN) is the most accurate classification technique used to diagnose COVID-19 because of the ability to use a different number of convolutional layers and its high classification accuracy. Classification using CNNs techniques requires a large number of images to learn and obtain satisfactory results. In this paper, we used SqueezNet with a modified output layer to classify X-ray images into three groups: COVID-19, normal, and pneumonia. In this study, we propose a deep learning method with enhance the features of X-ray images collected from Kaggle, Figshare to distinguish between COVID-19, Normal, and Pneumonia infection. In this regard, several techniques were used on the selected image samples which are Unsharp filter, Histogram equal, and Complement image to produce another view of the dataset. The Squeeze Net CNN model has been tested in two scenarios using the 13,437 X-ray images that include 4479 for each type (COVID-19, Normal and Pneumonia). In the first scenario, the model has been tested without any enhancement on the datasets. It achieved an accuracy of 91%. But, in the second scenario, the model was tested using the same previous images after being improved by several techniques and the performance was high at approximately 95%. The conclusion of this study is the used model gives higher accuracy results for enhanced images compared with the accuracy results for the original images. A comparison of the outcomes demonstrated the effectiveness of our DL method for classifying COVID-19 based on enhanced X-ray images.  相似文献   

2.
COVID-19 remains to proliferate precipitously in the world. It has significantly influenced public health, the world economy, and the persons’ lives. Hence, there is a need to speed up the diagnosis and precautions to deal with COVID-19 patients. With this explosion of this pandemic, there is a need for automated diagnosis tools to help specialists based on medical images. This paper presents a hybrid Convolutional Neural Network (CNN)-based classification and segmentation approach for COVID-19 detection from Computed Tomography (CT) images. The proposed approach is employed to classify and segment the COVID-19, pneumonia, and normal CT images. The classification stage is firstly applied to detect and classify the input medical CT images. Then, the segmentation stage is performed to distinguish between pneumonia and COVID-19 CT images. The classification stage is implemented based on a simple and efficient CNN deep learning model. This model comprises four Rectified Linear Units (ReLUs), four batch normalization layers, and four convolutional (Conv) layers. The Conv layer depends on filters with sizes of 64, 32, 16, and 8. A 2 × 2 window and a stride of 2 are employed in the utilized four max-pooling layers. A soft-max activation function and a Fully-Connected (FC) layer are utilized in the classification stage to perform the detection process. For the segmentation process, the Simplified Pulse Coupled Neural Network (SPCNN) is utilized in the proposed hybrid approach. The proposed segmentation approach is based on salient object detection to localize the COVID-19 or pneumonia region, accurately. To summarize the contributions of the paper, we can say that the classification process with a CNN model can be the first stage a highly-effective automated diagnosis system. Once the images are accepted by the system, it is possible to perform further processing through a segmentation process to isolate the regions of interest in the images. The region of interest can be assesses both automatically and through experts. This strategy helps so much in saving the time and efforts of specialists with the explosion of COVID-19 pandemic in the world. The proposed classification approach is applied for different scenarios of 80%, 70%, or 60% of the data for training and 20%, 30, or 40% of the data for testing, respectively. In these scenarios, the proposed approach achieves classification accuracies of 100%, 99.45%, and 98.55%, respectively. Thus, the obtained results demonstrate and prove the efficacy of the proposed approach for assisting the specialists in automated medical diagnosis services.  相似文献   

3.
This study is designed to develop Artificial Intelligence (AI) based analysis tool that could accurately detect COVID-19 lung infections based on portable chest x-rays (CXRs). The frontline physicians and radiologists suffer from grand challenges for COVID-19 pandemic due to the suboptimal image quality and the large volume of CXRs. In this study, AI-based analysis tools were developed that can precisely classify COVID-19 lung infection. Publicly available datasets of COVID-19 (N = 1525), non-COVID-19 normal (N = 1525), viral pneumonia (N = 1342) and bacterial pneumonia (N = 2521) from the Italian Society of Medical and Interventional Radiology (SIRM), Radiopaedia, The Cancer Imaging Archive (TCIA) and Kaggle repositories were taken. A multi-approach utilizing deep learning ResNet101 with and without hyperparameters optimization was employed. Additionally, the features extracted from the average pooling layer of ResNet101 were used as input to machine learning (ML) algorithms, which twice trained the learning algorithms. The ResNet101 with optimized parameters yielded improved performance to default parameters. The extracted features from ResNet101 are fed to the k-nearest neighbor (KNN) and support vector machine (SVM) yielded the highest 3-class classification performance of 99.86% and 99.46%, respectively. The results indicate that the proposed approach can be better utilized for improving the accuracy and diagnostic efficiency of CXRs. The proposed deep learning model has the potential to improve further the efficiency of the healthcare systems for proper diagnosis and prognosis of COVID-19 lung infection.  相似文献   

4.
A chest radiology scan can significantly aid the early diagnosis and management of COVID-19 since the virus attacks the lungs. Chest X-ray (CXR) gained much interest after the COVID-19 outbreak thanks to its rapid imaging time, widespread availability, low cost, and portability. In radiological investigations, computer-aided diagnostic tools are implemented to reduce intra- and inter-observer variability. Using lately industrialized Artificial Intelligence (AI) algorithms and radiological techniques to diagnose and classify disease is advantageous. The current study develops an automatic identification and classification model for CXR pictures using Gaussian Filtering based Optimized Synergic Deep Learning using Remora Optimization Algorithm (GF-OSDL-ROA). This method is inclusive of preprocessing and classification based on optimization. The data is preprocessed using Gaussian filtering (GF) to remove any extraneous noise from the image’s edges. Then, the OSDL model is applied to classify the CXRs under different severity levels based on CXR data. The learning rate of OSDL is optimized with the help of ROA for COVID-19 diagnosis showing the novelty of the work. OSDL model, applied in this study, was validated using the COVID-19 dataset. The experiments were conducted upon the proposed OSDL model, which achieved a classification accuracy of 99.83%, while the current Convolutional Neural Network achieved less classification accuracy, i.e., 98.14%.  相似文献   

5.
As the COVID-19 pandemic swept the globe, social media platforms became an essential source of information and communication for many. International students, particularly, turned to Twitter to express their struggles and hardships during this difficult time. To better understand the sentiments and experiences of these international students, we developed the Situational Aspect-Based Annotation and Classification (SABAC) text mining framework. This framework uses a three-layer approach, combining baseline Deep Learning (DL) models with Machine Learning (ML) models as meta-classifiers to accurately predict the sentiments and aspects expressed in tweets from our collected Student-COVID-19 dataset. Using the proposed aspect2class annotation algorithm, we labeled bulk unlabeled tweets according to their contained aspect terms. However, we also recognized the challenges of reducing data’s high dimensionality and sparsity to improve performance and annotation on unlabeled datasets. To address this issue, we proposed the Volatile Stopwords Filtering (VSF) technique to reduce sparsity and enhance classifier performance. The resulting Student-COVID Twitter dataset achieved a sophisticated accuracy of 93.21% when using the random forest as a meta-classifier. Through testing on three benchmark datasets, we found that the SABAC ensemble framework performed exceptionally well. Our findings showed that international students during the pandemic faced various issues, including stress, uncertainty, health concerns, financial stress, and difficulties with online classes and returning to school. By analyzing and summarizing these annotated tweets, decision-makers can better understand and address the real-time problems international students face during the ongoing pandemic.  相似文献   

6.
Coronavirus disease 2019 (COVID-19) has been termed a “Pandemic Disease” that has infected many people and caused many deaths on a nearly unprecedented level. As more people are infected each day, it continues to pose a serious threat to humanity worldwide. As a result, healthcare systems around the world are facing a shortage of medical space such as wards and sickbeds. In most cases, healthy people experience tolerable symptoms if they are infected. However, in other cases, patients may suffer severe symptoms and require treatment in an intensive care unit. Thus, hospitals should select patients who have a high risk of death and treat them first. To solve this problem, a number of models have been developed for mortality prediction. However, they lack interpretability and generalization. To prepare a model that addresses these issues, we proposed a COVID-19 mortality prediction model that could provide new insights. We identified blood factors that could affect the prediction of COVID-19 mortality. In particular, we focused on dependency reduction using partial correlation and mutual information. Next, we used the Class-Attribute Interdependency Maximization (CAIM) algorithm to bin continuous values. Then, we used Jensen Shannon Divergence (JSD) and Bayesian posterior probability to create less redundant and more accurate rules. We provided a ruleset with its own posterior probability as a result. The extracted rules are in the form of “if antecedent then results, posterior probability()”. If the sample matches the extracted rules, then the result is positive. The average AUC Score was 96.77% for the validation dataset and the F1-score was 92.8% for the test data. Compared to the results of previous studies, it shows good performance in terms of classification performance, generalization, and interpretability.  相似文献   

7.
(Aim) COVID-19 is an ongoing infectious disease. It has caused more than 107.45 m confirmed cases and 2.35 m deaths till 11/Feb/2021. Traditional computer vision methods have achieved promising results on the automatic smart diagnosis. (Method) This study aims to propose a novel deep learning method that can obtain better performance. We use the pseudo-Zernike moment (PZM), derived from Zernike moment, as the extracted features. Two settings are introducing: (i) image plane over unit circle; and (ii) image plane inside the unit circle. Afterward, we use a deep-stacked sparse autoencoder (DSSAE) as the classifier. Besides, multiple-way data augmentation is chosen to overcome overfitting. The multiple-way data augmentation is based on Gaussian noise, salt-and-pepper noise, speckle noise, horizontal and vertical shear, rotation, Gamma correction, random translation and scaling. (Results) 10 runs of 10-fold cross validation shows that our PZM-DSSAE method achieves a sensitivity of 92.06% ± 1.54%, a specificity of 92.56% ± 1.06%, a precision of 92.53% ± 1.03%, and an accuracy of 92.31% ± 1.08%. Its F1 score, MCC, and FMI arrive at 92.29% ±1.10%, 84.64% ± 2.15%, and 92.29% ± 1.10%, respectively. The AUC of our model is 0.9576. (Conclusion) We demonstrate “image plane over unit circle” can get better results than “image plane inside a unit circle.” Besides, this proposed PZM-DSSAE model is better than eight state-of-the-art approaches.  相似文献   

8.
Atrial fibrillation is the most common persistent form of arrhythmia. A method based on wavelet transform combined with deep convolutional neural network is applied for automatic classification of electrocardiograms. Since the ECG signal is easily inferred, the ECG signal is decomposed into 9 kinds of subsignals with different frequency scales by wavelet function, and then wavelet reconstruction is carried out after segmented filtering to eliminate the influence of noise. A 24-layer convolution neural network is used to extract the hierarchical features by convolution kernels of different sizes, and finally the softmax classifier is used to classify them. This paper applies this method of the ECG data set provided by the 2017 PhysioNet/CINC challenge. After cross validation, this method can obtain 87.1% accuracy and the F1 score is 86.46%. Compared with the existing classification method, our proposed algorithm has higher accuracy and generalization ability for ECG signal data classification.  相似文献   

9.
The prompt spread of Coronavirus (COVID-19) subsequently adorns a big threat to the people around the globe. The evolving and the perpetually diagnosis of coronavirus has become a critical challenge for the healthcare sector. Drastically increase of COVID-19 has rendered the necessity to detect the people who are more likely to get infected. Lately, the testing kits for COVID-19 are not available to deal it with required proficiency, along with-it countries have been widely hit by the COVID-19 disruption. To keep in view the need of hour asks for an automatic diagnosis system for early detection of COVID-19. It would be a feather in the cap if the early diagnosis of COVID-19 could reveal that how it has been affecting the masses immensely. According to the apparent clinical research, it has unleashed that most of the COVID-19 cases are more likely to fall for a lung infection. The abrupt changes do require a solution so the technology is out there to pace up, Chest X-ray and Computer tomography (CT) scan images could significantly identify the preliminaries of COVID-19 like lungs infection. CT scan and X-ray images could flourish the cause of detecting at an early stage and it has proved to be helpful to radiologists and the medical practitioners. The unbearable circumstances compel us to flatten the curve of the sufferers so a need to develop is obvious, a quick and highly responsive automatic system based on Artificial Intelligence (AI) is always there to aid against the masses to be prone to COVID-19. The proposed Intelligent decision support system for COVID-19 empowered with deep learning (ID2S-COVID19-DL) study suggests Deep learning (DL) based Convolutional neural network (CNN) approaches for effective and accurate detection to the maximum extent it could be, detection of coronavirus is assisted by using X-ray and CT-scan images. The primary experimental results here have depicted the maximum accuracy for training and is around 98.11 percent and for validation it comes out to be approximately 95.5 percent while statistical parameters like sensitivity and specificity for training is 98.03 percent and 98.20 percent respectively, and for validation 94.38 percent and 97.06 percent respectively. The suggested Deep Learning-based CNN model unleashed here opts for a comparable performance with medical experts and it is helpful to enhance the working productivity of radiologists. It could take the curve down with the downright contribution of radiologists, rapid detection of COVID-19, and to overcome this current pandemic with the proven efficacy.  相似文献   

10.
Coronavirus (COVID-19) outbreak was first identified in Wuhan, China in December 2019. It was tagged as a pandemic soon by the WHO being a serious public medical condition worldwide. In spite of the fact that the virus can be diagnosed by qRT-PCR, COVID-19 patients who are affected with pneumonia and other severe complications can only be diagnosed with the help of Chest X-Ray (CXR) and Computed Tomography (CT) images. In this paper, the researchers propose to detect the presence of COVID-19 through images using Best deep learning model with various features. Impressive features like Speeded-Up Robust Features (SURF), Features from Accelerated Segment Test (FAST) and Scale-Invariant Feature Transform (SIFT) are used in the test images to detect the presence of virus. The optimal features are extracted from the images utilizing DeVGGCovNet (Deep optimal VGG16) model through optimal learning rate. This task is accomplished by exceptional mating conduct of Black Widow spiders. In this strategy, cannibalism is incorporated. During this phase, fitness outcomes are rejected and are not satisfied by the proposed model. The results acquired from real case analysis demonstrate the viability of DeVGGCovNet technique in settling true issues using obscure and testing spaces. VGG 16 model identifies the image which has a place with which it is dependent on the distinctions in images. The impact of the distinctions on labels during training stage is studied and predicted for test images. The proposed model was compared with existing state-of-the-art models and the results from the proposed model for disarray grid estimates like Sen, Spec, Accuracy and F1 score were promising.  相似文献   

11.
An epidemic is a quick and widespread disease that threatens many lives and damages the economy. The epidemic lifetime should be accurate so that timely and remedial steps are determined. These include the closing of borders schools, suspension of community and commuting services. The forecast of an outbreak effectively is a very necessary but difficult task. A predictive model that provides the best possible forecast is a great challenge for machine learning with only a few samples of training available. This work proposes and examines a prediction model based on a deep extreme learning machine (DELM). This methodology is used to carry out an experiment based on the recent Wuhan coronavirus outbreak. An optimized prediction model that has been developed, namely DELM, is demonstrated to be able to make a prediction that is fairly best. The results show that the new methodology is useful in developing an appropriate forecast when the samples are far from abundant during the critical period of the disease.During the investigation, it is shown that the proposed approach has the highest accuracy rate of 97.59% with 70% of training, 30% of test and validation. Simulation results validate the prediction effectiveness of the proposed scheme.  相似文献   

12.
The purpose of this research is the segmentation of lungs computed tomography (CT) scan for the diagnosis of COVID-19 by using machine learning methods. Our dataset contains data from patients who are prone to the epidemic. It contains three types of lungs CT images (Normal, Pneumonia, and COVID-19) collected from two different sources; the first one is the Radiology Department of Nishtar Hospital Multan and Civil Hospital Bahawalpur, Pakistan, and the second one is a publicly free available medical imaging database known as Radiopaedia. For the preprocessing, a novel fuzzy c-mean automated region-growing segmentation approach is deployed to take an automated region of interest (ROIs) and acquire 52 hybrid statistical features for each ROIs. Also, 12 optimized statistical features are selected via the chi-square feature reduction technique. For the classification, five machine learning classifiers named as deep learning J4, multilayer perceptron, support vector machine, random forest, and naive Bayes are deployed to optimize the hybrid statistical features dataset. It is observed that the deep learning J4 has promising results (sensitivity and specificity: 0.987; accuracy: 98.67%) among all the deployed classifiers. As a complementary study, a statistical work is devoted to the use of a new statistical model to fit the main datasets of COVID-19 collected in Pakistan.  相似文献   

13.
Indian agriculture is striving to achieve sustainable intensification, the system aiming to increase agricultural yield per unit area without harming natural resources and the ecosystem. Modern farming employs technology to improve productivity. Early and accurate analysis and diagnosis of plant disease is very helpful in reducing plant diseases and improving plant health and food crop productivity. Plant disease experts are not available in remote areas thus there is a requirement of automatic low-cost, approachable and reliable solutions to identify the plant diseases without the laboratory inspection and expert's opinion. Deep learning-based computer vision techniques like Convolutional Neural Network (CNN) and traditional machine learning-based image classification approaches are being applied to identify plant diseases. In this paper, the CNN model is proposed for the classification of rice and potato plant leaf diseases. Rice leaves are diagnosed with bacterial blight, blast, brown spot and tungro diseases. Potato leaf images are classified into three classes: healthy leaves, early blight and late blight diseases. Rice leaf dataset with 5932 images and 1500 potato leaf images are used in the study. The proposed CNN model was able to learn hidden patterns from the raw images and classify rice images with 99.58% accuracy and potato leaves with 97.66% accuracy. The results demonstrate that the proposed CNN model performed better when compared with other machine learning image classifiers such as Support Vector Machine (SVM), K-Nearest Neighbors (KNN), Decision Tree and Random Forest.  相似文献   

14.
Leaf species identification leads to multitude of societal applications. There is enormous research in the lines of plant identification using pattern recognition. With the help of robust algorithms for leaf identification, rural medicine has the potential to reappear as like the previous decades. This paper discusses CNN based approaches for Indian leaf species identification from white background using smartphones. Variations of CNN models over the features like traditional shape, texture, color and venation apart from the other miniature features of uniformity of edge patterns, leaf tip, margin and other statistical features are explored for efficient leaf classification.  相似文献   

15.
16.
17.
With the increasing and rapid growth rate of COVID-19 cases, the healthcare scheme of several developed countries have reached the point of collapse. An important and critical steps in fighting against COVID-19 is powerful screening of diseased patients, in such a way that positive patient can be treated and isolated. A chest radiology image-based diagnosis scheme might have several benefits over traditional approach. The accomplishment of artificial intelligence (AI) based techniques in automated diagnoses in the healthcare sector and rapid increase in COVID-19 cases have demanded the requirement of AI based automated diagnosis and recognition systems. This study develops an Intelligent Firefly Algorithm Deep Transfer Learning Based COVID-19 Monitoring System (IFFA-DTLMS). The proposed IFFA-DTLMS model majorly aims at identifying and categorizing the occurrence of COVID19 on chest radiographs. To attain this, the presented IFFA-DTLMS model primarily applies densely connected networks (DenseNet121) model to generate a collection of feature vectors. In addition, the firefly algorithm (FFA) is applied for the hyper parameter optimization of DenseNet121 model. Moreover, autoencoder-long short term memory (AE-LSTM) model is exploited for the classification and identification of COVID19. For ensuring the enhanced performance of the IFFA-DTLMS model, a wide-ranging experiments were performed and the results are reviewed under distinctive aspects. The experimental value reports the betterment of IFFA-DTLMS model over recent approaches.  相似文献   

18.
In December 2019, a group of people in Wuhan city of Hubei province of China were found to be affected by an infection called dark etiology pneumonia. The outbreak of this pneumonia infection was declared a deadly disease by the China Center for Disease Control and Prevention on January 9, 2020, named Novel Coronavirus 2019 (nCoV-2019). This nCoV-2019 is now known as COVID-19. There is a big list of infections of this coronavirus which is present in the form of a big family. This virus can cause several diseases that usually develop with a serious problem. According to the World Health Organization (WHO), 2019-nCoV has been placed as the modern generation of Severe Acute Respiratory Syndrome (SARS) and Middle East Respiratory Syndrome (MERS) coronaviruses, so COVID-19 can repeatedly change its internal genome structure to extend its existence. Understanding and accurately predicting the mutational properties of the genome structure of COVID-19 can form a good leadership role in preventing and fighting against coronavirus. In this research paper, an analytical approach has been presented which is based on the k-means cluster technique of machine learning to find the clusters over the mutational properties of the COVID-19 viruses’ complete genome. This method would be able to act as a promising tool to monitor and track pathogenic infections in their stable and local genetics/hereditary varieties. This paper identifies five main clusters of mutations with as best in most cases in the coronavirus that could help scientists and researchers develop disease control vaccines for the transformation of coronaviruses.  相似文献   

19.
Automatic plant classification through plant leaf is a classical problem in Computer Vision. Plants classification is challenging due to the introduction of new species with a similar pattern and look-a-like. Many efforts are made to automate plant classification using plant leaf, plant flower, bark, or stem. After much effort, it has been proven that leaf is the most reliable source for plant classification. But it is challenging to identify a plant with the help of leaf structure because plant leaf shows similarity in morphological variations, like sizes, textures, shapes, and venation. Therefore, it is required to normalize all plant leaves into the same size to get better performance. Convolutional Neural Networks (CNN) provides a fair amount of accuracy when leaves are classified using this approach. But the performance can be improved by classifying using the traditional approach after applying CNN. In this paper, two approaches, namely CNN + Support Vector Machine (SVM) and CNN + K-Nearest Neighbors (kNN) used on 3 datasets, namely LeafSnap dataset, Flavia Dataset, and MalayaKew Dataset. The datasets are augmented to take care all the possibilities. The assessments and correlations of the predetermined feature extractor models are given. CNN + kNN managed to reach maximum accuracy of 99.5%, 97.4%, and 80.04%, respectively, in the three datasets.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号