首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Intraspecific confrontation between male rats represents a biologically relevant form of social stress. C-fos expression has been used to map the pattern of neural activation following either a single (acute) or repeated (10 times) exposure of an intruder male to a larger male in the latter's home cage. These conditions induce high levels of aggressive interaction. Sixty minutes after a single defeat, there was intense c-fos expression (quantified using image analysis) in restricted areas of the basal forebrain (including lateral septum, bed nucleus of stria terminalis, lateral preoptic area, lateral hypothalamic area, paraventricular nucleus, and medial and central amygdala) as well as in the autonomic and monoaminergic nuclei of the brainstem (central grey, dorsal and median raphe, locus coeruleus and nucleus of the solitary tract). After the tenth defeat, this pattern was modified despite persistently high levels of aggression. Some areas in the forebrain (bed nucleus of stria terminalis, paraventricular nucleus and medial amygdala) continued to express increased c-fos; others (the septum, lateral hypothalamic area, lateral preoptic area and central amygdala) no longer expressed c-fos. The brainstem response was equally varied: the central grey and the raphe nuclei continued to respond after repeated defeat, whereas the solitary nucleus and locus coeruleus did not. On the other hand, there was no change in the behaviour of intruder rats after repeated defeat. This study shows the pattern of adaptation at a cellular level in the basal forebrain and brainstem to repeated defeat. As in our previous studies of repeated restraint, modulation in the expression of c-fos following repeated stress is highly regionally specific, suggesting that differential neural processing is involved in adaptation to social stress.  相似文献   

2.
Endothelins are a range of peptides (endothelin-1, endothelin-2, and endothelin-3) well known to act peripherally as powerful cardiovascular-regulating agents. Recently, they have been shown to be localized in CSN, where they may act as central neurotransmitters. A variety of putative roles has been ascribed to them in the CNS. To identify those regions of the brain capable of responding to these peptides, the expression of c-fos (an immediate-early gene), has been used to map patterns of activation following intracerebroventricular (i.c.v.) infusions of endothelins in Lister-hooded rats. This has been correlated with changes in heart rate, core temperature and plasma corticosterone levels. Endothelin-3 i.c.v. (50 pmol) decreased both heart rate and core temperature (both recorded by telemetry). This effect lasted for about 30-45 min. Endothelin-1 (10 pmol) or endothelin-3 (50 pmol) i.c.v. induced c-fos expression in the specific regions in the forebrain and brainstem. Strong expression was found in the septum, bed nucleus of the stria terminalis, parvicellular paraventricular nucleus, the central nucleus of the amygdala, dorsal motor nucleus of the vagus and solitary nucleus. There was less marked c-fos expression in other areas of the basal forebrain, such as the organum vasculosum of the lamina terminals, median preoptic nucleus, supraoptic nucleus and the magnocellular. There are two classes of endothelin receptor (A and B). An endothelin-A receptor antagonist, BQ-123, abolished c-fos expression in all structures in the forebrain and brainstem following endothelin-1 infusions. However, an endothelin-B agonist (TetraAla endothelin-1) did not induce discernible c-fos expression in the forebrain or brainstem. These results suggest that the endothelin-A receptor is responsible for endothelin-dependent c-fos induction in the brain. Interactions between endothelins and angiotensin II were also studied. The pattern of c-fos induced by endothelin-3 and angiotensin II was different (particularly in the anteroventral region of the third ventricle). Furthermore, prior infusions of endothelin-3 interfered with the expression of c-fos induced by subsequent angiotensin II, and also suppressed the latter's dipsogenic effect. These results show that endothelin-3 and angiotensin II interact at both behavioural and cellular levels, and that endothelins may play significant roles in the central control of fluid balance and autonomic activity.  相似文献   

3.
4.
Intracerebroventricular (i.c.v.) infusions of angiotensin II (AII) reliably induced c-fos expression in the supraoptic (SON) and paraventricular (PVN) nuclei, as well as other areas of the basal forebrain including the OVLT, subfornical organ (SFO), and bed nucleus (BNST). Double-labelling showed that AII-induced c-fos was observed in both vasopressin (AVP-) and oxytocin (OXY)-containing neurons of the SON and PVN in male rats. Allowing rats to drink water after AII infusions suppressed c-fos expression both AVP- and OXY-stained magnocellular neurons. Intragastric infusions of water were also effective, showing that oro-pharyngeal stimuli were not critical. Maximal suppression occurred in rats in whom water had been infused intragastrically about 5 min before i.c.v. AII infusions, suggesting that changes in osmolarity were responsible. i.c.v. AII also induced c-fos expression in a number of brainstem structures, including the solitary nucleus (NTS), lateral parabrachial nucleus (LPBN), locus coeruleus (LC), and the area postrema (AP). These results indicate that AVP and OXY-containing neurons in the magnocellular parts of the SON and PVN alter their immediate-early gene response to AII after water intake, and that this does not depend upon oro-pharyngeal factors. Furthermore, AII can induce c-fos expression in a number of brainstem nuclei associated with autonomic function, and these do not respond to water intake.  相似文献   

5.
The c-fos immediate-early gene is acutely induced in brain after various stimuli from the digestive tract. 5-HT3 receptors and vagal afferents have been found involved in intestinal motor disturbances induced by intestinal anaphylaxis. Our aim was to determine whether intestinal anaphylaxis activates brain structures, using c-fos expression, and to evaluate the modulation of c-fos induction by 5-HT3 receptors and vagal afferents. The effects of antigen challenge on intestinal motility were evaluated in ovalbumin-sensitized Hooded Lister rats chronically fitted with NiCr electrodes in the jejunal wall. Intestinal motility was assessed in conscious rats pretreated or not by perivagal capsaicin or a 5-HT3 antagonist (ondansetron). In sensitized rats, ovalbumin disrupted for 62.4 +/- 9.5 min the jejunal migrating motor complexes (MMC) and an important c-fos expression was detected in the nucleus tractus solitarius (NTS), lateral parabrachial nucleus (LPB) and paraventricular nucleus of the hypothalamus (PVN). Intraperitoneal administration of ondansetron or perivagal capsaicin treatment significantly reduced the duration of MMC disruption and attenuated markedly c-fos staining in the 3 brain sites. In contrast, intracerebroventricular administration of ondansetron significantly reduced jejunal motor alterations but did not diminish the c-fos expression, suggesting a role of central 5-HT3 receptors in the efferent control of the intestinal disturbances. Blockade of both c-fos expression and MMC disruption by systemic ondansetron and by perivagal capsaicin indicates that some brainstem nuclei are involved in digestive disturbances after intestinal anaphylaxis, and reflects an involvement of peripheral 5-HT3 receptors on vagal afferents. The reduction of c-fos staining in NTS as well as in LPB and PVN after perivagal capsaicin suggests that the NTS is the primary relay in the activation of the central nervous system during intestinal allergic challenge.  相似文献   

6.
Subsets of neurons ensheathed by perineuronal nets containing chondroitin unsulfated proteoglycan have been immunohistochemically mapped throughout the rat central nervous system from the olfactory bulb to the spinal cord. A variable proportion of neurons were outlined by immunoreactivity for the monoclonal antibody (Mab 1B5), but only after chondroitinase ABC digestion. In forebrain cortical structures the only immunoreactive nets were around interneurons; in contrast, throughout the brainstem and spinal cord a large proportion of projection neurons were surrounded by intense immunoreactivity. Immunoreactivity was ordinarily found in the neuropil between neurons surrounded by an immunopositive net. By contrast, within the pyriform cortex the neuropil of the plexiform layer was intensely immunoreactive even though no perineuronal net could be found. The presence of perineuronal nets could not be correlated with any single class of neurons; however a few functionally related groups (e.g., motor and motor-related structures: motor neurons both in the spinal cord and in the efferent somatic nuclei of the brainstem, deep cerebellar nuclei, vestibular nuclei; red nucleus, reticular formation; central auditory pathway: ventral cochlear nucleus, trapezoid body, superior olive, nucleus of the lateral lemniscus, inferior colliculus, medial geniculate body) were the main components of the neuronal subpopulation displaying chondroitin unsulfated proteoglycans in the surrounding extracellular matrix. The immunodecorated neurons found in the present study and those shown by different monoclonal antibodies or by lectin cytochemistry, revealed consistent overlapping of their distribution patterns.  相似文献   

7.
To better understand the input-output organization of the midline thalamus, we compared the distribution of its peptidergic and monoaminergic afferents, which were visualized by using immunocytochemistry, with the distribution of neurons projecting to different basal forebrain structures, which were mapped using retrograde fluorescent tracers. Serotonin and most of the peptides were found throughout paraventricular thalamic nucleus (PV) and in other midline and intralaminar nuclei (type 1 pattern). Neuropeptide Y, alpha MSH and the catecholamine synthetic enzymes were largely restricted to dorsolateral PV (type 2 pattern). Vasopressin was found in dorsomedial PV and intermediodorsal nucleus in a pattern complementary to the type 2 distribution (type 3 pattern). Neurons projecting to accumbens core were present in paraventricular, intermediodorsal, and other midline nuclei. Neurons projecting to accumbens shell and to central amygdaloid nucleus were found in dorsal PV. The peptidergic zones were only loosely correlated with the distribution of different classes of projection neurons. The type 2 pattern overlapped best with neurons projecting to accumbens shell, and to a lesser extent to central amygdaloid nucleus, while the type 3 pattern overlapped best with neurons projecting to core of accumbens. This partial overlap suggests that some brainstem and hypothalamic nuclei preferentially affect different basal forebrain targets through the midline thalamus, and may allow, for example, information about stress to specifically influence accumbens shell and central amygdaloid nucleus. Nevertheless, most of the peptidergic afferents (type 1 pattern) to midline thalamus cover neurons projecting throughout the basal forebrain, which suggests that all of these neurons receive a variety of brainstem and hypothalamic inputs.  相似文献   

8.
Injection of the fructose analogue, 2,5-anhydro-d-mannitol (2,5-AM), increases food intake and Fos-like immunoreactivity (Fos-li) in both brainstem and forebrain structures. Because of the interconnections between brainstem and forebrain areas, it has not been possible to determine whether or to what extent induction of Fos-li in a given region reflects brainstem-forebrain interactions. We addressed this issue using chronic decerebrate (CD) rats with complete transections of the neuroaxis at the meso-diencephalic juncture. CD and neurologically intact control rats were injected (i.p.) with saline or 400 mg/kg 2,5-AM and brains were examined for Fos-li. Both intact and CD rats showed increased Fos-li in the nucleus of the solitary tract (NTS) after injection of 2,5-AM as compared with saline. 2, 5-AM treatment increased Fos-li in the external lateral division of parabrachial nucleus (PBNel) in intact but not in CD rats, suggesting that descending projections from the forebrain may play a role in the activation of PBNel neurons after 2,5-AM injection. Decerebration eliminated significant 2,5-AM-induced Fos-li responses in forebrain structures, including the paraventricular nucleus, supraoptic nucleus, bed nucleus of the stria terminalis and central nucleus of the amygdala. The results are consistent with the hypothesis that the activation of forebrain structures after 2,5-AM treatment is due to stimulation by ascending projections from the brainstem.  相似文献   

9.
The aim of the present study is to verify the functional and anatomical neural pathways which innervate the urinary bladder in the central nervous system of the rat. To identify the functional neural pathway, the urinary bladder was stimulated by infusing formalin for 2 h. Then, brain and spinal cord were dissected out and immunohistochemistry was done by using anti-c-fos antibody. Many c-fos immunoreactive (IR) neurons were identified in the telencephalic cortical areas and in several brainstem nuclei, which are known mostly to be related with urinary bladder. In the spinal cord, a number of c-fos IR neurons were found in the lamina I, IIo, dorsal gray commissure, sacral parasympathetic nucleus. To identify the anatomical neural pathway of the urinary bladder, Pseudorabies virus (PRV) was injected into the wall of urinary bladder and was identified with anti-PRV by using immunohistochemistry. Most PRV labeled neurons were found where c-fos IR neurons were identified and few of them were also in the areas where c-fos IR neurons were not found, e.g., prefrontal cortex, agranular insular cortex, and subfornical organ. In the spinal cord, PRV labeled cells were found all over the gray matter. The present study presents morphological evidence demonstrating the supraspinal areas are related with the neural control of the urinary bladder and most functional neural pathway of the urinary bladder is well consistent with the anatomical neural pathway except in some telencephalic cortical areas.  相似文献   

10.
Exposure to hypercapnia and electrical stimulation of the carotid sinus nerve (CSN) has been shown to induce c-fos expression in several brain stem regions including the nucleus tractus solitarius (NTS). To test whether the labeled neurons were activated directly by hypercapnia or secondarily via the carotid bodies (sinus nerve), adult rats were exposed to either air or 14-16% CO2 for 1 h. Experiments were done on eight groups: (1) exposure to air, (2) exposure to CO2, (3) chronic CSN denervation/CO2, (4) chronic unilateral CSN denervation/CO2, (5) chronic sham CSN denervation/CO2, (6) anesthetized/CO2, (7) anesthetized and acute vagotomy/CO2, and (8) premedicated with morphine, 10 mg s.c., 20 min before exposure to CO2. After exposure to CO2 or air the rats were anesthetized, perfused with 4% paraformaldehyde and the brains processed for immunohistochemical staining for c-fos protein using the PAP (i.e. peroxidase anti-peroxidase) technique. Labeled neurons in the area of the NTS in every second 50- "mu"m section were counted and their position plotted using a microscope and camera lucida attachment. Rats exposed to CO2 had a significantly greater number of labeled neurons in the NTS than those exposed to air. Other interventions, such as CSN denervation, surgery, anesthesia, vagotomy or injection of morphine did not significantly affect the level of c-fos expression in rats exposed to hypercapnia, indicative of central stimulation rather than secondary peripheral input. These responsive neurons may be part of a widespread central chemoreceptive complex.  相似文献   

11.
Fluvoxamine is a selective serotonin (5-HT) reuptake inhibitor (SSRI) with a broad spectrum of behavioral and therapeutic effects, e.g. in depressive illness. We used the expression of c-fos, after both acute and chronic oral administration of fluvoxamine in the rat, to study its immediate and long-term effects, in relation to the distribution of Galanin (GAL) and Vasoactive Intestinal Polypeptide (VIP). After acute oral administration, most consistent increases were apparent in (parts of); the nucleus of the solitary tract, medial part; the lateral parabrachial nucleus, external part; the bed nucleus of the stria terminalis, dorsolateral part; and the central nucleus of the amygdala, lateral part. After chronic administration, distribution of Fos-IR was similar to acute administration, although numbers of Fos-IR neurons were no longer significantly different from control values. It is concluded that activation of 5-HT3-receptors in the caudal brainstem or gastro-intestinal afferents of the vagal nerve may play a role in the observed pattern of Fos-IR after fluvoxamine administration. The relationship with the antidepressant effects of fluvoxamine needs further investigations.  相似文献   

12.
This study was designed to examine the mechanisms by which systemic interleukin-1 affects neuroendocrine systems in the brain. Intraperitoneal injections of interleukin-1 beta (1.25 micrograms/rat) were administered to rats. One or three hours after injection, the expression levels of the immediate-early gene c-fos and of genes for several neuropeptides, receptors, and enzymes were examined by in situ hybridization histochemistry. In the brainstem at 1 hr, c-fos mRNA was elevated in the area postrema and nucleus of the solitary tract, but not in the locus coeruleus. At 3 hr, the c-fos mRNA levels had increased further in the nucleus of the solitary tract. Rostrally, elevations in c-fos mRNA levels were found in the hypothalamic and thalamic paraventricular nuclei, central nucleus of amygdala, bed nucleus of the stria terminalis, and medial preoptic area, peaking at 1 hr and diminishing at 3 hr. In addition, at 3 hr a new pattern of c-fos activity emerged--the arcuate nucleus and cells at the external margins throughout the brain now expressed c-fos mRNA. Corticotropin-releasing hormone mRNA levels were doubled in the paraventricular nucleus at 1 and 3 hr, concomitant with elevations in plasma adrenocorticotrophic hormone (ACTH) and corticosterone. Tyrosine hydroxylase mRNA levels in the brainstem did not change. The c-fos mRNA induction patterns reveal a temporally dynamic response to interleukin-1 administration. We propose that the early set of structures responding to interleukin-1 initiates the neuroendocrine response to cytokines. Coactivation of the area postrema and nucleus of the solitary tract may reflect entry into the brain and neural transduction of the peripheral signal. The late set--including the nucleus of the solitary tract, arcuate nucleus, and the brain's edge--may reflect cellular activation along the diffusion routes traveled by interleukin-1 or a bioactive transduction product, because the pattern of edge labeling is similar to the autoradiographic pattern of flow lf radiolabeled tracer substances in the cerebrospinal fluid. The late c-fos mRNA response to interleukin-1, therefore, may represent a demonstration of information transfer in the parasynaptic mode, also known as volume transmission.  相似文献   

13.
Molecular events underlying the mechanism by which brain injury elicits delayed transneuronal degeneration of neurons remote from the site of initial injury are not well understood. In rats, acute injury of the caudate nucleus (CN) and globus pallidus (GP) by local injection of excitotoxic ibotenic acid (IA) or by transient forebrain ischemia resulted in delayed cell death of neurons in the substantia nigra reticulata (SNr). To elucidate the involvement of glutamate receptor mediated hyperactivity of neurons produced by loss of inhibitory inputs in this delayed degeneration of SNr neurons, the region-specific expression of an immediate early gene, c-fos, and the effect of glutamate receptor antagonists on the c-fos expression were examined by using immunocytochemical and in situ hybridization analysis. Following unilateral IA-injection into the CN and GP, a robust expression of c-fos mRNA and Fos protein was induced specifically in neurons of both subthalamic nucleus (STN) and SNr deafferented by the IA-lesions 36 h after IA-injection. The delayed expression of Fos-protein in SNr neurons lasted for 48 h longer than that in STN neurons. Following unilateral IA-injection confined to the CN, an intense but short-term expression of Fos-protein was exhibited only in neurons of the deafferented SNr. c-fos mRNA and Fos protein were not expressed in neurons of the substantia nigra compacta at any time points examined. The induction of c-fos mRNA and Fos protein in neurons of the STN and SNr following IA-lesions of the CN and GP was reduced markedly by non-NMDA receptor antagonist (GYKI52466), but not by NMDA receptor antagonist (MK-801). The region-specific c-fos expression implies that deprivation of inhibitory afferents (disinhibition) due to destruction of presynaptic neurons can induce increased activity of postsynaptic neurons. The effect of GYKI52466 on the c-fos gene expression in neurons of the deafferented STN and SNr suggests that activation of non-NMDA receptors may be involved in a pathophysiological cascade for the transneuronal degeneration of SNr neurons.  相似文献   

14.
Brainstem catecholaminergic neurons have been implicated as mediating adaptive autonomic and neuroendocrine responses to cardiovascular challenges. To clarify the nature of this involvement, immuno- and hybridization histochemical methods were used to follow c-fos expression in these neurons in response to acute stimuli that differentially affect blood pressure and volume. From low basal levels, hypotensive hemorrhage (15%) provoked a progressive increase in the number and distribution of Fos-immunoreactive (ir) nuclei in the nucleus of the solitary tract (NTS), the A1 and C1 cell groups of the ventrolateral medulla, and in the pontine A5, locus coeruleus, and lateral parabrachial cell groups peaking at 2.0-2.5 hours after the challenge. Fos-ir ventrolateral medullary neurons, subsets of which were identified as projecting to the paraventricular hypothalamic nucleus or spinal cord, were predominantly aminergic, whereas most of those in the NTS were not. Infusion of an angiotensin II antagonist blunted hemorrhage-induced Fos expression in the area postrema, and attenuated that seen elsewhere in the medulla and pons. Nitroprusside-induced isovolemic hypotension yielded a pattern of c-fos induction similar to that seen following hemorrhage, except in the area postrema and the A1 cell group, where the response was muted or lacking. Phenylephrine-induced hypertension stimulated a restricted pattern of c-fos expression, largely limited to induced hypertension stimulated a restricted pattern of c-fos expression, largely limited to non-aminergic neurons, whose distribution in the NTS conformed to the termination patterns of primary baroreceptor afferents, and in the ventrolateral medulla overlapped in part with those of vagal cardiomotor and depressor neurons. These findings underscore the importance of brainstem catecholaminergic neurons in effecting integrated homeostatic responses to cardiovascular challenges and their ability to responding strategically to specific modalities of cardiovascular information. They also foster testable predictions as to effector neuron populations that might be recruited to respond to perturbations in individual circulatory parameters.  相似文献   

15.
A monoclonal antibody raised against the mouse cerebellar inositol trisphosphate receptor was used to study the immunohistochemical localization of this protein in the human central nervous system. As in the brain of rodents, strong immunoreactivity was found in dendrites, axon and cell bodies of Purkinje cells, as well as in nerve endings in the cerebellar and vestibular nuclei. Cerebellar efferent fibres were the only positive structures demonstrated in the brainstem and no immunostaining could be detected in the spinal cord or dorsal root ganglia. By contrast, numerous immunoreactive neurons were present in several telencephalic and diencephalic structures, including the brain cortex, hippocampus, basal ganglia, basal forebrain, amygdala and thalamus. Immunostaining of these brain neurons was weaker than that found in Purkinje cells and was evident in cell bodies and dendrites. Thus, the human brain contains a molecule cross-reacting with the mouse inositol trisphosphate receptor protein that is expressed in a pattern similar to that found in rodents. These findings can be of great importance for understanding the function of this protein in normal brain and its modifications in neuropathological disorders.  相似文献   

16.
Neurocircuit inhibition of hypothalamic paraventricular nucleus (PVN) neurons controlling hypothalamo-pituitary-adrenocortical (HPA) activity prominently involves GABAergic cell groups of the hypothalamus and basal forebrain. In the present study, stress responsiveness of GABAergic regions implicated in HPA inhibition was assessed by in situ hybridization, using probes recognizing the GABA-synthesizing enzyme glutamic acid decarboxylase (GAD65 and GAD67 isoforms). Acute restraint preferentially increased GAD67 mRNA expression in several stress-relevant brain regions, including the arcuate nucleus, dorsomedial hypothalamic nucleus, medial preoptic area, bed nucleus of the stria terminalis (BST) and hippocampus (CA1 and dentate gyrus). In all cases GAD67 mRNA peaked at 1 hr after stress and returned to unstimulated levels by 2 hr. GAD65 mRNA upregulation was only observed in the BST and dentate gyrus. In contrast, chronic intermittent stress increased GAD65 mRNA in the anterior hypothalamic area, dorsomedial nucleus, medial preoptic area, suprachiasmatic nucleus, anterior BST, perifornical nucleus, and periparaventricular nucleus region. GAD67 mRNA increases were only observed in the medial preoptic area, anterior BST, and hippocampus. Acute and chronic stress did not affect GAD65 or GAD67 mRNA expression in the caudate nucleus, reticular thalamus, or parietal cortex. Overall, the results indicate preferential upregulation of GAD in central circuitry responsible for direct (hypothalamus, BST) or multisynaptic (hippocampus) control of HPA activity. The distinct patterns of GAD65 and GAD67 by acute versus chronic stress suggest stimulus duration-dependent control of GAD biosynthesis. Chronic stress-induced increases in GAD65 mRNA expression predict enhanced availability of GAD65 apoenzyme after prolonged stimulation, whereas acute stress-specific GAD67 upregulation is consistent with de novo synthesis of active enzyme by discrete stressful stimuli.  相似文献   

17.
The inability of neonates to fully evoke the acute-phase reaction to infection is thought to be due in part to central nervous system immaturity. We used the expression of Fos protein to evaluate whether acute-phase reaction deficits in neonates may indeed be linked to unresponsiveness of brain regions that mediate the responses to infection in adult animals. In this study, we used lipopolysaccharide (LPS) as the infectious agent. Rats aged 0-1, 3, 6, 9, 12 and 15 days were divided into groups treated with low- or high-dose LPS (Escherichia coli; 50 and 500 micrograms/kg, respectively, i.p.) or pyrogen-free saline (PFS) i.p. Two hours after injection, the animals were deeply anesthetized, sacrificed, and their brains removed for Fos immunocytochemistry. Fos-like immunoreactive (FLI) neurons in the preoptic area (POA), paraventricular nucleus of the hypothalamus (PVN), and organum vasculosum laminae terminalis (OVLT) were compared between the treatment and the age groups. The forebrain was devoid of FLI neurons in 1-day-old rats, but FLI neurons were present at 3 days of age and continued to increase with age until 9 days after birth. There were no significant differences between the LPS- and PFS-treated groups until day 12 of age. At 12 and 15 days of age, FLI neurons in the PVN, medial preoptic and lateral preoptic nuclei, and the area surrounding the OVLT were greater in the LPS-treated animals. The expression appeared to be both age- and dose-dependent. These observations show that the rat brain structures that participate in the mediation of the acute-phase reaction do not become responsive to systemic pyrogens until 12 days of age, thus suggesting that insensitivity of the brain to pyrogenic agents may be partly responsible for the poor response of neonates to infectious agents.  相似文献   

18.
Fos, the protein product of the immediate early gene c-fos, was used to map functional circuitry underlying contextual conditioned fear. Male rats were given footshocks in a distinctive context and later tested using freezing as the behavioral measure and compared with no-shock and no-retention-test control groups. An increased number of Fos-immunoreactive neurons was found in the lateral part of the central nucleus and in the anterior basolateral and lateral amygdalar nuclei in the brains of the conditioned-fear group compared with controls. Further, a greater number of Fos-immunoreactive neurons was observed in the right central and anterior basolateral nuclei compared with the number of labeled neurons in these structures on the left. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

19.
Expression of c-fos mRNA was studied in the adult rat brain following cochlear ablations by using in situ hybridization. In normal animals, expression was produced by acoustic stimulation and was found to be tonotopically distributed in many auditory nuclei. Following unilateral cochlear ablation, acoustically driven expression was eliminated or decreased in areas normally activated by the ablated ear, e.g., the ipsilateral dorsal and ventral cochlear nuclei, dorsal periolivary nuclei, and lateral nucleus of the trapezoid body and the contralateral medial and ventral nuclei of the trapezoid body, lateral lemniscal nuclei, and inferior colliculus. These deficits did not recover, even after long survivals up to 6 months. Results also indicated that neurons in the dorsal cochlear nucleus could be activated by contralateral stimulation in the absence of ipsilateral cochlear input and that the influence of the contralateral ear was tonotopically organized. Results also indicated that c-fos expression rose rapidly and persisted for up to 6 months in neurons in the rostral part of the contralateral medial nucleus of the trapezoid body following a cochlear ablation, even in the absence of acoustic stimulation. This response may reflect a release of constitutive excitatory inputs normally suppressed by missing afferent input or changes in homeostatic gene expression related to sensory deprivation. Instances of transient, surgery-dependent increases in c-fos mRNA expression in the absence of acoustic stimulation were observed in the superficial dorsal cochlear nucleus and the cochlear nerve root on the ablated side.  相似文献   

20.
Injuries to the brain induce rapid expression of c-fos and c-jun proto-oncogenes in neurons. The protein products (Fos and Jun) of these cellular immediate early genes are thought to regulate target genes that participate in fundamental biological responses. In recent studies of rat brain infarct we demonstrated that gliosis and angiogenesis, two of the fundamental biological responses, are related to neuronal expression of basic fibroblast growth factor (bFGF). In the present study, we explore the linkage between c-fos and bFGF genes by comparing the temporal and spatial domains of Fos and bFGF immunoreactivities (IR) in brain infarct and in transient global ischemia. We demonstrate colocalization of Fos-IR and ischemic changes in neurons at infarct periphery and in regions of "selective vulnerability" beginning 3 hours post-infarction and lasting up to 1-2 weeks. These are: cortical neurons in layers II-III and V, interneurons in hippocampal formation, cerebellar Purkinje cells, and many subcortical nuclei and brainstem nuclei. bFGF-IR appears 12-24 hours later than Fos-IR in the same region but in non-ischemic neurons and the expression persists beyond 2 weeks. Persistent and not transient c-fos expression appears to be associated with ischemic neuronal death, although some of these neurons may survive beyond 2 weeks postinfarction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号