首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
How neurones in the visual cortex acquire their response properties during postnatal development is an important question with far-reaching implications. In the present study, we demonstrate the developmental specification of geniculo-cortical afferents using our previously proposed model for the activity-dependent self-organization of neural networks. Our results indicate, in contrast to common beliefs, that both orientation and direction selectivity can be achieved in the primary visual cortex even if the retinae were never exposed to oriented and/or moving objects during development.  相似文献   

2.
Recently Sillito et al. (Nature 1994;369:479-82) discovered correlations in the spike trains of a relatively distant pair of cat lateral geniculate nucleus cells when simultaneously stimulated by a drifting grating; no such correlation occurs when the visual cortex is removed. In a further analysis of the data, we have found that short, high-frequency bursts contribute substantially to the synchronization and we hypothesize that the origin of the bursts is the low-threshold calcium spike. Guided by this hypothesis, our model of the corticogeniculate pathway and early visual system reproduces the experimental data in nearly every detail, as well as making predictions about cortical activity during the synchronizing process. We also discuss the possible behavioral relevance of correlations in the geniculo-cortical loop as well as other neural systems.  相似文献   

3.
Following a unilateral lesion of the visual cortex (cortical areas 17, 18, and 18a) in adult rats, neurons in the ipsilateral dorsal lateral geniculate nucleus (LGN) are axotomized, which leads to their atrophy and death. The time course of this neuronal degeneration was studied quantitatively, and the astroglial response was examined with glial fibrillary acidic protein immunohistochemistry. More than 95% of the neurons in the ipsilateral LGN survive during the first 3 days following a lesion of the visual cortex. However, in the next 4 days, massive neuronal death ensues, reducing the number of surviving neurons to approximately 33% of normal by the end of the first postoperative week. Between 2 weeks and 24 weeks postoperatively, the number of neurons present in the LGN declines very gradually from 34% to 17% of normal. Three days after a lesion of the visual cortex, the mean cross-sectional areas of ipsilateral LGN neurons are 13% smaller than normal (87%). By 1 week after the operation, surviving LGN neurons have atrophied to 66% of their normal area. Subsequently, the size of surviving neurons declines slowly to approximately 50% of normal at 24 weeks after the cortical lesion. Astrocytes in the ipsilateral LGN also react to cortical damage. At 1 day after a lesion of the visual cortex, glial fibrillary acidic protein immunoreactivity in the LGN is almost undetectable, but a distinct increase in immunoreactivity is seen at 3 days. Immunoreactivity peaks between 1 week and 2 weeks postoperatively and, thereafter, remains intense for at least 24 weeks. Thus, following a lesion of the visual cortex, the somata of neurons in the LGN remain essentially normal morphologically for about 3 days before the onset of rapid atrophy and death. Moreover, most of the neural cell death that occurs in the LGN after axotomy takes place in the last half of the first postoperative week.  相似文献   

4.
Subplate neurons, the first neurons of the cerebral cortex to differentiate and mature, are thought to be essential for the formation of connections between thalamus and cortex, such as the system of ocular dominance columns within layer 4 of visual cortex. To learn more about the requirement for subplate neurons in the formation of thalamocortical connections, we have sought to identify the neurotransmitters and peptides expressed by the specific class of subplate neurons that sends axonal projections into the overlying visual cortex. To label retrogradely subplate neurons, fluorescent latex microspheres were injected into primary visual cortex of postnatal day 28 ferrets, just prior to the onset of ocular dominance column formation. Subsequently, neurons were immunostained with antibodies against glutamate, glutamic acid decarboxylase (GAD-67), parvalbumin, neuropeptide Y (NPY), somatostatin (SRIF), or nitric oxide synthase (NOS). Retrograde labeling results indicate that the majority of subplate neurons projecting into the cortical plate reside in the upper half of the subplate. Combined immunostaining and microsphere labeling reveal that about half of cortically projecting subplate neurons are glutamatergic; most microsphere-labeled subplate neurons do not stain for GAD-67, parvalbumin, NPY, SRIF, or NOS. These observations suggest that subplate neurons can provide a significant glutamatergic synaptic input to the cortical plate, including the neurons of layer 4. If so, excitation from the axons of subplate neurons may be required in addition to that from lateral geniculate nucleus neurons for the activity-dependent synaptic interactions that lead to the formation of ocular dominance columns during development.  相似文献   

5.
Fluorescence cross-correlation: a new concept for polymerase chain reaction   总被引:1,自引:0,他引:1  
Infusion of sodium selenite to the occipital cortex of the rat was used for the specific tracing of zinc-rich pathways. Large numbers of labeled somata were found ipsilaterally in the visual, orbital and frontal cortices, and contralaterally in homotopic and heterotopic visual areas. Labeled neurons were also found ipsilaterally in the retrosplenial, parietal, sensory-motor, temporal and perirhinal cortex. In contrast to the cortico-cortical connections, ascending afferents to the visual cortex were not zinc-rich except for a few labeled neurons in the claustrum. Additional injections showed reciprocal zinc-rich connections between the visual cortex and the orbital and frontal cortices. The latter cortices also received ascending zinc-rich afferents from the claustrum. Selenite injections revealed the layered distribution and the morphology of these labeled neurons in the neocortex. Zinc-rich neurons were found in layers II-III, V and VI. However, none was found in layer IV. Zinc-rich somata appeared as pyramidal and inverted neurons. The contrasting chemical properties of cortical and subcortical visual afferents may account for the functional differences between these systems.  相似文献   

6.
Previous reports have argued that single neurons in the ventral premotor cortex of rhesus monkeys (PMv, the ventrolateral part of Brodmann's area 6) typically show spatial response fields that are independent of gaze angle. We reinvestigated this issue for PMv and also explored the adjacent prearcuate cortex (PAv, areas 12 and 45). Two rhesus monkeys were operantly conditioned to press a switch and maintain fixation on a small visual stimulus (0.2 degree x 0.2 degree) while a second visual stimulus (1 degree x 1 degree or 2 degrees x 2 degrees) appeared at one of several possible locations on a video screen. When the second stimulus dimmed, after an unpredictable period of 0.4-1.2 s, the monkey had to quickly release the switch to receive liquid reinforcement. By presenting stimuli at fixed screen locations and varying the location of the fixation point, we could determine whether single neurons encode stimulus location in "absolute space" or any other coordinate system independent of gaze. For the vast majority of neurons in both PMv (90%) and PAv (94%), the apparent response to a stimulus at a given screen location varied significantly and dramatically with gaze angle. Thus, we found little evidence for gaze-independent activity in either PMv or PAv neurons. The present result in frontal cortex resembles that in posterior parietal cortex, where both retinal image location and eye position affect responsiveness to visual stimuli.  相似文献   

7.
Using anesthetized and immobilized monkeys, responses of neurons in the posterior inferotemporal cortex to visual patterns were examined. Response properties were compared between the sulcus and the gyrus, extending between the anterior tip of the posterior middle temporal sulcus and the inferior occipital sulcus. Of 682 neurons tested, 37% in the sulcus (134/365) and 36% in the gyrus (113/317) responded to one or more patterns. The preference of neurons for patterns varied from neuron to neuron; some neurons responded selectively to one particular pattern, whereas others responded to two or more patterns. To evaluate response properties of neurons, two indices were calculated (the pattern preference index and the pattern selectivity index). The distributions of these indices in the sulcus did not differ significantly from those of the gyrus. Furthermore, the relationship between the pattern preference index and the pattern selectivity index for each neuron was almost the same in these two portions; most neurons responding to a small number of patterns showed inhibitory or weak responses to the worst pattern. In both portions, most neurons had receptive fields with small eccentricities and receptive field sizes were almost the same. These results suggest that the cortex in the sulcus in the posterior inferotemporal cortex is involved in the detection of features of visual patterns, similarly to the cortex in the gyrus.  相似文献   

8.
Amblyopia is a developmental disorder of pattern vision. After surgical creation of esotropic strabismus in the first weeks of life or after wearing -10 diopter contact lenses in one eye to simulate anisometropia during the first months of life, macaques often develop amblyopia. We studied the response properties of visual cortex neurons in six amblyopic macaques; three monkeys were anisometropic, and three were strabismic. In all monkeys, cortical binocularity was reduced. In anisometropes, the amblyopic eye influenced a relatively small proportion of cortical neurons; in strabismics, the influence of the two eyes was more nearly equal. The severity of amblyopia was related to the relative strength of the input of the amblyopic eye to the cortex only for the more seriously affected amblyopes. Measurements of the spatial frequency tuning and contrast sensitivity of cortical neurons showed few differences between the eyes for the three less severe amblyopes (two strabismic and one anisometropic). In the three more severely affected animals (one strabismic and two anisometropic), the optimal spatial frequency and spatial resolution of cortical neurons driven by the amblyopic eye were substantially and significantly lower than for neurons driven by the nonamblyopic eye. There were no reliable differences in neuronal contrast sensitivity between the eyes. A sample of neurons recorded from cortex representing the peripheral visual field showed no interocular differences, suggesting that the effects of amblyopia were more pronounced in portions of the cortex subserving foveal vision. Qualitatively, abnormalities in both the eye dominance and spatial properties of visual cortex neurons were related on a case-by-case basis to the depth of amblyopia. Quantitative analysis suggests, however, that these abnormalities alone do not explain the full range of visual deficits in amblyopia. Studies of extrastriate cortical areas may uncover further abnormalities that explain these deficits.  相似文献   

9.
The distribution and morphology of neurons containing calretinin in area 17 of the cat visual cortex were studied. The calcium-binding protein calretinin was localized by antibody immunocytochemistry. Most of the calretinin-labeled neurons were located in layers I, II, and III. There were few calretinin-labeled cells in the other layers. The labeled neurons varied in morphology. The majority of the labeled neurons had small round or oval somas with long processes traveling perpendicular to the pial surface. Many small multipolar neurons were also labeled by this antibody. These results indicate that the calcium-binding protein calretinin is contained both in specific layers and selective cell types in the cat primary visual cortex.  相似文献   

10.
Single-unit activity was recorded from inferior temporal (IFT) cortex and the hippocampus in 2 macaques trained on auditory–visual and visual–visual delayed matching-to-sample tasks. The main purpose of the study was to compare the response properties of delay neurons between the 2 areas. The authors noted that (1) IFT cortex delay activity was usually selective to a particular stimulus, whereas hippocampal delay activity was usually nonselective; (2) the level of delay activity was generally larger in the hippocampus than in IFT cortex; and (3) unlike IFT cortex delay activity, hippocampal delay activity tended to increase in magnitude as the delay progressed. The authors also examined the functional significance of delay activity and noted a higher probability of encountering a delay neuron when the monkeys were performing 75–200% correct as compared with 50–75% correct. The significance of these findings for visual recognition memory is discussed. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

11.
We propose a model for the neuronal implementation of selective visual attention based on temporal correlation among groups of neurons. Neurons in primary visual cortex respond to visual stimuli with a Poisson distributed spike train with an appropriate, stimulus-dependent mean firing rate. The spike trains of neurons whose receptive fields do not overlap with the "focus of attention" are distributed according to homogeneous (time-independent) Poisson process with no correlation between action potentials of different neurons. In contrast, spike trains of neurons with receptive fields within the focus of attention are distributed according to non-homogeneous (time-dependent) Poisson processes. Since the short-term average spike rates of all neurons with receptive fields in the focus of attention covary, correlations between these spike trains are introduced which are detected by inhibitory interneurons in V4. These cells, modeled as modified integrate-and-fire neurons, function as coincidence detectors and suppress the response of V4 cells associated with non-attended visual stimuli. The model reproduces quantitatively experimental data obtained in cortical area V4 of monkey by Moran and Desimone (1985).  相似文献   

12.
This study set out to examine in detail the distribution of axons of sympathetic non-noradrenergic neurons innervating the arterial bed in skeletal muscles of the forelimb and hindlimb of guinea-pigs. The distribution of non-noradrenergic axons with immunoreactivity to vasoactive intestinal peptide (VIP) was examined in limb muscles of different histochemical character. The immunohistochemical demonstration of myosin heavy chain from fast-twitch muscle, and the histochemical demonstration of adenosine triphosphatase and succinic dehydrogenase, were used to determine the muscle fibre profile of 6 different limb muscles. Muscles included the oxidative type I muscle fibre-rich accessory semimembranosus muscle, the predominantly glycolytic type II muscle fibre-rich cranial gracilis and biceps brachii muscles and the plantaris, gastrocnemius medial head and triceps brachii long head of mixed muscle fibre composition. The frequency with which the VIP-immunoreactive (VIP-IR) axons innervated intramuscular arterial vessels was compared between categories of muscles defined by their muscle fibre profile. This study demonstrated that the projection of non-noradrenergic sympathetic neurons to skeletal muscle vasculature was widespread in guinea-pig limb muscles, but that it was not uniform. VIP-IR axons were more likely to innervate the arterial vasculature of muscles with a high proportion of type I and/or oxidative muscle fibres than of muscles with a large proportion of type IIb muscle fibres. This relationship between the distribution of sympathetic non-noradrenergic axons and the metabolic characteristics of muscle suggests that these presumed vasodilator neurons have an important role in matching blood flow to the particular metabolic demands of different limb muscles.  相似文献   

13.
The influence of associative (orbital-anterior, parietal) and projective (auditory, sensomotor) cerebral cortex areas stimulation on activity of the Purkinje neurons of cerebellar cortex was studied in adult cats under chloralose-nembutal or nembutal anesthesia. These reactions were compared with the responses to peripheral stimuli. Definite similarity in responses of the Purkinje cells to different cortical (associative, projective) stimuli was found both for types of neurons and their responsiveness. In responses of the Purkinje cells to peripheral stimulation there was no sharp similarity as it was in responses to cortical stimuli. So, in cortical stimulation almost similar number of neurons (above 50%) was excited and in peripheral stimulation the responsiveness of neurons had marked difference: to electrical stimulation of skin there were 44.6%, to auditory 34.2%, to visual 18.8% of neuron responses.  相似文献   

14.
Responses of several neurons from area 17 in the rat visual cortex to illumination with round spots of growing size were recorded. The size and shape of receptive fields of the neurons were determined. When the spot was placed into the central part of the receptive fields of neurons situated along one vertical run, distribution analysis of excited, inhibited, and non-responding neurons here showed that microlocus of excitation was being formed in the middle layers of the visual cortex. As the spot became larger, the neuronal ensemble "grew" up to a certain critical size, beyond which the microlocus of excitation divided, and the mosaic of neuronal ensembles began to form reaching maximal clear-cutness of diffuse illumination of the eye.  相似文献   

15.
Immunohistochemical studies have been performed to investigate the coexistence of VIP with dopamine-beta-hydroxylase (D(beta)H), vesicular acetylcholine transporter (VAChT), somatostatin (SOM) or neuropeptyd Y (NPY) within nerve fibres supplying the immature mammary gland in the pig. Generally, a moderate number of the VIP-immunoreactive (VIP-IR) nerve fibres were located in the nipple and parenchyma of the gland. VIP-IR fibres surrounded smooth muscle cells (SMC), blood vessels (BV) and lactiferous ducts (LD). Double-labelling immunohistochemistry revealed that some of VIP-IR nerve fibres also contained immunoreactivity to D(beta)H. VIP/D(beta)H-IR nerves were associated with BV and SMC and single fibres were observed around the LD in both nipple and parenchyma of the gland. VIP/VAChT-IR nerve fibres were not observed. The majority of VIP-IR fibres associated with SMC were also SOM-IR. Less numerous VIP/SOM-IR fibres supplied the BV and were located around the LD of the gland. A small number of VIP-IR nerves also displayed immunoreactivity to NPY. VIP/NPY-IR nerve fibres supplied the BV of the gland.  相似文献   

16.
The orientation sensitivity to moving light bars was determined for 113 neurons in laminae A, A1 and C of the dorsal part of the lateral geniculate nucleus (LGNd) of kittens 7-42 days old. Forty neurons (35.4%) were biased to contrast orientation (OB neurons), i.e. their response to an optimally oriented bar was 2-10 times stronger than their response to a bar oriented orthogonally to the optimal. The remaining 73 neurons were not sensitive to contrast orientation. Evidence is presented that orientation bias in the LGNd develops prior to visual experience. Orientation biased responses in the LGNd strongly depended on stimulus parameters; preferred stimuli were light bars having a length of 5 degrees or more and moving at velocities slower than 5 degrees/s. Our findings suggest that the OB neurons of the LGNd could be effective in generating the early orientation sensitivity in the visual cortex.  相似文献   

17.
With the aid of the cytospectrophotometry method the author studied the influence of light deprivation (the exposure of animals to darkness during 8 weeks following birth) on neurons of the dorsal nucleus of the external geniculate body of rats according to the index of glutamatedehydrogenase activity. It was established that unlike the visual cortex, separate groups of neurons which react differently to light deprivation, the majority of nervous cells in the external geniculate body demonstrate similar changes: a drop in the medium activity of glutamatdehydrogenase in neurons and its neurological satellites, a shift of neuron histograms according to this index to the left. These changes are accompanied by an increase of smaller neurons as compared to normal, as well as a drop in the amount of neurons with satellites. The found differences of reactions to light deprivation between the cortical neurons and switch areas of the visual analyzer are discussed in the light of functional traits of such neurons.  相似文献   

18.
The voluntary control of gaze implies the ability to make saccadic eye movements specified by abstract instructions, as well as the ability to repress unwanted orientating to sudden stimuli. Both of these abilities are challenged in the antisaccade task, because it requires subjects to look at an unmarked location opposite to a flashed stimulus, without glancing at it. Performance on this task depends on the frontal/prefrontal cortex and related structures, but the neuronal operations underlying antisaccades are not understood. It is not known, for example, how excited visual neurons that normally trigger a saccade to a target (a prosaccade) can activate oculomotor neurons directing gaze in the opposite direction. Visual neurons might, perhaps, alter their receptive fields depending on whether they receive a pro- or antisaccade instruction. If the receptive field is not altered, the antisaccade goal must be computed and imposed from the top down to the appropriate oculomotor neurons. Here we show, using recordings from the supplementary eye field (a frontal cortex oculomotor centre) in monkeys, that visual and movement neurons retain the same spatial selectivity across randomly mixed pro- and antisaccade trials. However, these neurons consistently fire more before antisaccades than prosaccades with the same trajectories, suggesting a mechanism through which voluntary antisaccade commands can override reflexive glances.  相似文献   

19.
In adult primate visual cortex, the calcium-binding proteins calbindin (CB) and parvalbumin (PV) are localized in different subsets of GABAergic neurons with a characteristic laminar distribution. However, the emergence and development of CB and PV in relation to the periods of functional maturation of the human visual cortex are not known. Therefore, we examined (i) postnatal changes in the distribution of immunoreactivity (ir) for CB and PV in the visual cortex; (ii) the pattern of changes in immunoreactivity in relation to the synaptic maturation; and (iii) differences in the maturation of CB and PV immunoreactivity between areas 17 and 18. We found a consistently high expression of CB in neonatal visual cortex, particularly in layer IV and infragranular layers. However, despite an early appearance of PV, its peak in development occurred only after 2 months of age, characterized by a transient overexpression in the thalamo-recipient layer IV and a continuous inside-out maturation in supragranular layers. The neonatal pattern of high CB-ir in layers IV-VI was transformed during infancy and childhood into an adult pattern of high CB-ir in layer II, but low CB-ir in layer IV and infragranular layers. There was no difference in pattern and tempo of maturation of calcium-binding proteins between area 17 and 18, indicating simultaneous development of cortical inhibitory circuits among cytoarchitectonically and functionally distinct cortical areas. In addition, the reorganization of CB/PV expression temporally and spatially coincides with the course of cortical synaptogenesis, and delineates the major stages of maturation of the human visual cortex.  相似文献   

20.
The visual areas of the temporal lobe of the primate are thought to be essential for the representation of visual objects. To examine the role of these areas in the visual awareness of a stimulus, we recorded the activity of single neurons in monkeys trained to report their percepts when viewing ambiguous stimuli. Visual ambiguity was induced by presenting incongruent images to the two eyes, a stimulation condition known to instigate binocular rivalry, during which one image is seen at a given time while the other is perceptually suppressed. Previous recordings in areas V1, V2, V4, and MT of monkeys experiencing binocular rivalry showed that only a small proportion of striate and early extrastriate neurons discharge exclusively when the driving stimulus is seen. In contrast, the activity of almost all neurons in the inferior temporal cortex and the visual areas of the cortex of superior temporal sulcus was found to be contingent upon the perceptual dominance of an effective visual stimulus. These areas thus appear to represent a stage of processing beyond the resolution of ambiguities--and thus beyond the processes of perceptual grouping and image segmentation--where neural activity reflects the brain's internal view of objects, rather than the effects of the retinal stimulus on cells encoding simple visual features or shape primitives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号