首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, a simple self-assembled lateral growth of ZnO nanowires (NWs) photodetector has been synthesized by a hydrothermal method at a temperature as low as 85 °C. The ZnO NWs exhibit single-crystalline wurtzite with elongated c-axis and can be selectively lateral self-assembled around the edges of ZnO seeding layer. The current of ZnO NWs is sensitive to the variation of ambient pressures, i.e. 4.47 μA was decreased to 1.48 μA with 5 V-bias as 1.1 × 10− 6 Torr changed to 760 Torr, accordingly. Moreover, the current-voltage characteristics of ZnO NWs photodetectors can be evidently distinguished by UV illumination (i.e. λ = 325 nm). The photocurrent of ZnO NWs with UV illumination is twice larger than dark current while the voltage biased at 5 V. Consequently, this faster photoresponse convinces that the hydrothermally grown lateral ZnO NWs devices have a fairly good for the fabrication of UV photodetectors.  相似文献   

2.
3.
In this paper, in order to increase the power conversion efficiency we demonstrated the selective growth of "nanoforest" composed of high density, long branched "treelike" multigeneration hierarchical ZnO nanowire photoanodes. The overall light-conversion efficiency of the branched ZnO nanowire DSSCs was almost 5 times higher than the efficiency of DSSCs constructed by upstanding ZnO nanowires. The efficiency increase is due to greatly enhanced surface area for higher dye loading and light harvesting, and also due to reduced charge recombination by providing direct conduction pathways along the crystalline ZnO "nanotree" multi generation branches. We performed a parametric study to determine optimum hierarchical ZnO nanowire photoanodes through the combination of both length-wise growth and branched growth processes. The novel selective hierarchical growth approach represents a low cost, all solution processed hydrothermal method that yields complex hierarchical ZnO nanowire photoanodes by utilizing a simple engineering of seed particles and capping polymer.  相似文献   

4.
ZnO nanowires have been synthesized on porous silicon substrates with different porosities via the vapour-liquid-solid method. The texture coefficient analysed from the XRD spectra indicates that the nanowires are more highly orientated on the appropriate porosity of porous silicon substrate than on the smooth surface of silicon. The Raman spectrum reveals the high quality of the ZnO nanowires. From the temperature-dependent photoluminescence spectra, we deduced the activation energies of free and bound excitons.  相似文献   

5.
Micro- and nanocrystalline ZnO powders and films have been prepared under mild hydrothermal conditions, and their spectroscopic and lasing properties have been investigated. The polycrystalline ZnO films showed stimulated emission with a lasing threshold of 0.67 MW/cm2. Analysis of their lasing behavior suggests that the stimulated emission is generated by individual crystallites, each acting as a microlaser.  相似文献   

6.
We investigated the effects of surface pattern size and shape on the characteristics of hydrothermally grown ZnO nanorods. For this purpose, the structural characteristics of ZnO nanorods were examined using X-ray diffraction and scanning electron microscopy. The sputtered ZnO seed layer was patterned using photolithography techniques on a Si substrate. ZnO nanorods with a [0001] texturing structure were successfully grown on selective areas by hydrothermal processes. In our experiments, however, it was observed that the diameter and the texture of the ZnO nanorods were strongly influenced by the size of the surface pattern.  相似文献   

7.
ZnO nanowires were grown on a-plane GaN templates by chemical vapor deposition (CVD) without employing a catalyst. The a-plane GaN templates were pre-deposited on an r-plane sapphire substrate by metal-organic CVD. The resulting ZnO nanowires grow in angles off- related to the GaN basal plane. X-ray diffraction (XRD) spectra showed that the ZnO layer was grown with a heteroepitaxial relationship of (110)ZnO||(110)GaN. Photoluminescence spectra measured at 17 K exhibited near-band-edge emission at 372 nm with a full width at half maximum of 10 nm. The growth mechanism on a-GaN was the Volmer-Weber (VW) mode and differed from the Stranski-Krastanow (SK) mode observed for growth on c-GaN. This difference results from the higher interfacial free-energy on the a-plane between ZnO and GaN than that on the c-plane orientation.  相似文献   

8.
High quality GaAs nanowires grown on glass substrates   总被引:1,自引:0,他引:1  
We report for the first time the growth of GaAs nanowires directly on low-cost glass substrates using atmospheric pressure metal organic vapor phase epitaxy via a vapor-liquid-solid mechanism with gold as catalyst. Substrates used in this work were of float glass type typically seen in household window glasses. Growth of GaAs nanowires on glass were investigated for growth temperatures between 410 and 580 °C. Perfectly cylindrical nontapered nanowires with a growth rate of ~33 nm/s were observed at growth temperatures of 450 and 470 °C, whereas highly tapered pillar-like wires were observed at 580 °C. Nanowires grew horizontally on the glass surface at 410 °C with a tendency to grow in vertically from the substrate as the growth temperature was increased. X-ray diffraction and transmission electron microscopy revealed that the nanowires have a perfect zinc blende structure with no planar structural defects or stacking faults. Strong photoluminescence emission was observed both at low temperature and room temperature indicating a high optical quality of GaAs nanowires. Growth comparison on impurity free fused silica substrate suggests unintentional doping of the nanowires from the glass substrate.  相似文献   

9.
Vertical single-crystal ZnO nanowires with uniform diameter and uniform length were selectively grown on ZnO:Ga/glass templates at 600/spl deg/C by a self-catalyzed vapor-liquid-solid process without any metal catalyst. It was found that the ZnO nanowires are grown preferred oriented in the [002] direction with a small X-ray diffraction full-width half-maximum. Photoluminescence, field-emission scanning electron microscopy, and high-resolution transmission electron microscopy measurements also confirmed good crystal quality of our ZnO nanowires. Field emitters using these ZnO nanowires were also fabricated. It was found that threshold field of the fabricated field emitters was 14 V//spl mu/m. With an applied electric field of 24 V//spl mu/m, it was found that the emission current density was around 0.1 mA/cm/sup 2/.  相似文献   

10.
We studied the effect of Zn2+ source concentration on the structural and optical properties of hydrothermally grown ZnO nanorods. The nanorods were grown on ZnO/p-Si(111) substrate using by a hydrothermal process in various concentrations of reagent at a low temperature (approximately 95 degrees C) and the structural and optical characteristics of ZnO nanorods were subsequently investigated by X-ray diffraction, field-emission scanning electron microscopy, and room temperature photoluminescence. The results demonstrate that the morphology and crystallinity of ZnO nanorods are influenced by the overall concentration of the precursor. The density and diameter of ZnO nanorods with a hexagonal structure are especially sensitivite to concentration of reactants. Furthermore, the structural transition is shown by increasing concentration. At the lowest concentration of Zn2+, the ZnO nanorods grow as single crystals with a low density and variable orientations. On the contrary, at the highest concentration, the nanorods grow as polycrystas due to the supersaturated Zn2+ source.  相似文献   

11.
不同衬底上氧化锌纳米结构的水热法制备研究   总被引:1,自引:1,他引:1  
采用水热方法,以氯化锌和氨水为反应溶液,在铜和硅等不同基底上制备出不同特征的ZnO纳米棒和纳米管阵列.借助SEM和xRD等手段对其结构和形貌进行了分析研究.在常温下该样品表现出很好的光致发光性能.实验表明,在水热法中ZnO纳米材料的形貌、取向、排列等特征与衬底的选择有直接的关系.通过分析ZnO纳米管的形成过程,提出了一种新的由ZnO纳米棒在低温下溶解制得ZnO纳米管的生长机理.  相似文献   

12.
GaN nanostructures have been synthesized on silicon substrates using chemical vapor deposition. Prior to growth silicon substrates were engraved using stainless-steel micro-tips. Straight as well as twisted nanowires were observed along the engraved lines/regions. Straight nanowires were few tens of microns in length and the twisted ones were few microns in length with diameter variation between 30 nm and 100 nm. The electron microscopy analysis indicates that the nanowires were grown parallel to the c-axis and possible growth mechanism is described. Raman scattering indicates good quality of nanowires exhibiting intense E2(high) mode and A1(LO) mode and a huge red-shift in the mode position indicates nano-size effects. Such engraved substrates without any explicit catalyst can provide site controlled growth of nanowires and this methodology is extendable for growing nanowires of related materials.  相似文献   

13.
The field-emission electrical properties of hydrothermally synthesized zinc-oxide nanowires grown on SiO2-Si substrate are reported. Vertically aligned single-crystalline emitters with distinct length L and diameter D are realized by controlling the assisted growth of porous anodic aluminum oxide (AAO) templates. Field-emission measurement revealed that these field emitters exhibited controllable turn-on field Eto and the field enhancement factor β. Sample with feature size of L = 500 nm and D = 80 nm was prepared and then used as a basis for examining the size effect. Lower Eto and higher β were observed consistently for increasing the aspect ratio L/D. The enhanced properties of Eto = 1.48 V/μm and β up to 6100 are achieved for L/D = 53 (L = 1600 nm and D = 30 nm). Optimal characterizing parameters of Eto and β will be reached while pursuing extreme L/D practically. Factors such as the geometric limit of AAO template manufacture and the filling efficiency of ZnO into AAO pores will exert influence on the size-dependent effect.  相似文献   

14.
The optical properties of hydrothermally grown bulk ZnO is investigated by low temperature photoluminescence (PL) spectroscopy. The effects of annealing in an argon atmosphere, as well as the influence of hydrogen plasma exposure, on the PL of as-grown material are studied. The 11 K PL spectrum of the as-grown ZnO shows different excitonic lines in the NBE region: several bound exciton lines are clearly visible. The origin of these bound excitons is discussed, as well as the influence of annealing on these lines. A shift in the deep level emission (DLE) is also observed with an increase in annealing temperature: a red shift is detected when the annealing temperature is increased up to 650 °C, while a subsequent blue shift is observed upon an increase in the annealing temperature. The involvement of Li and Cu in this phenomenon will be discussed and the effect of hydrogen on this DLE will also be studied.  相似文献   

15.
We investigated the effect of ZnO buffer layer thickness on the growth of hydrothermally grown ZnO nanorods. A series of ZnO buffer layers with different thicknesses was deposited on a p-Si (111) substrate using a co-sputtering system. After annealing the ZnO buffer layer, ZnO nanorods grown were grown hydrothermally at 95 degrees C. Unlike ZnO nanorods grown on as-deposited ZnO buffer layer, the diameter and length of ZnO nanorods grown on annealed ZnO buffer layers can be controlled. The structural and optical properties of ZnO nanorods grown on annealed ZnO buffer layers were analyzed by field-emission scanning electron microscopy, X-ray diffraction, and photoluminescence. The influence of ZnO buffer layer thickness on ZnO nanorods growth is discussed.  相似文献   

16.
于灵敏  朱长纯  商世广  潘金艳 《功能材料》2007,38(10):1569-1571
利用物理热蒸发法制备大规模的蒲公英状的ZnO纳米锥,利用荧光光谱仪对ZnO纳米锥进行了光致发光性能测试.针对现有的丝网印刷碳纳米管(CNTs)薄膜需要各种后处理工艺后才能改善其场发射特性的问题,提出了一种不需任何后处理丝网印刷ZnO纳米锥的浆料配制工艺.用该工艺制备的丝网印刷ZnO纳米锥的场发射特性测试表明,ZnO纳米锥与制浆剂质量比为3∶5的薄膜的开启场强最低为2.25V/μm(电流密度为1μA/cm2),在4.6V/μm场强下,阳极荧光粉的发光点亮度高且分布均匀.说明该方法成本低,工艺简单,无需任何后处理,在ZnO纳米锥场发射显示器的制作中有很好的实际应用价值.  相似文献   

17.
If the silicon industry is to successfully integrate ZnO nanowires (NWs) into existing devices to fully utilise the piezoelectric or optical properties of ZnO NWs, then a detailed understanding of the effect of metal interconnects on the morphology of the NWs during growth needs to be obtained. In this study, ZnO NWs were hydrothermally grown at 90 °C on Au, Ni and a Si substrate control to mimic the typical surfaces of a MetalMUMPs MEMS chip. The growth rate was significantly affected by the metal film below the ZnO seed layer, which was mainly attributed to changes in the roughness and grain size of the seed layer deposited, with the growth rate decreasing with increasing roughness. The growth rate on Si and Au surfaces also increased when isolated from the Ni samples, suggesting that Ni cations released in the solution could also inhibit growth by electrostatically attaching to the NWs surface and acting as a barrier to the incorporation of zinc ions. Furthermore, photoluminescence studies show the addition of metal layers to the substrate reduces the optical quality of the produced ZnO NWs.  相似文献   

18.
One dimensional nitrogen-doped ZnO nanowires were deposited on C-plane sapphire using metal organic chemical vapour deposition. Nanowires have been characterized by scanning electron microscopy, transmission electron microscopy, micro-Raman scattering and micro-photoluminescence spectroscopy. The structural analysis has shown a high crystalline quality. In N-doped ZnO nanowires nitrogen incorporation was emphasized by Raman spectral analysis and reduction of nitrogen concentration along the wire, from the bottom to the top was found by local analysis. Low temperature micro-photoluminescence spectra exhibit donor-acceptor pair transitions.  相似文献   

19.
β-SiC nanowires are a novel type of photocatalysts. However, they tend to be entangled together especially at high concentrations when dispersed in water, which may reduce the photocatalytic activity. It is reasonable to expect that β-SiC nanowires would provide better photocatalytic activity if they are grown on activated carbon. In the letter we report the successful synthesis of quantities of β-SiC nanowires grown on the surfaces of the activated carbon by pyrolysis of polycarbosilane at 1300 °C. The nanowires, with the diameters of 50–100 nm and the length of tens of micrometers, are composed of single crystal β-SiC along the 〈1 1 1〉 direction. Both the VLS and the VS mechanisms were employed to interpret the nanowires growth.  相似文献   

20.
Vertically aligned arrays of ultralong ZnO nanowires were synthesized on SiO2 substrates with carbothermal vapor phase transport method with Au seeding layer. High density of vertically aligned ZnO nanowires with lengths from a few to ∼300 μm could be grown by controlling growth conditions. Supply of high concentration of Zn vapor and control of the ratio between Zn vapor and oxygen are found to have the most significant effects on the growth of long ZnO nanowires in the vapor-solid growth mechanism. The nanowires are of high crystalline quality as confirmed by various structural, compositional, and luminescent measurements. Luminescent and electrical properties of ZnO nanowires with different growth conditions were also investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号