首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
端羟基嵌段聚醚(HTPE)由聚四氢呋喃和聚乙二醇组成,具有力学性能良好、含氧量高、柔顺性好、玻璃化转变温度低、静电感度低以及与硝酸酯增塑剂相容性好等特点,它的开发旨在改善端羟基聚丁二烯(HTPB)推进剂钝感特性。本文综述了HTPE黏合剂的合成方法、力学性能、玻璃化转变温度、热性能及HTPE推进剂的燃烧性能,并对其前景进行了展望。  相似文献   

2.
按照文献方法,制备了2,6-二氨基-3,5-二硝基吡啶-1-氧化物(ANPyO)Ni(II)和Cu(II)两种含能配合物,用激光粒度测试仪及GJB772A-97法测试了粒度和感度,用密闭爆发器分别测试了含ANPyO Ni(II)和Cu(II)配合物发射药的燃烧性能,用靶线法测试了含两种配合物双基推进剂的燃烧催化性能。研究了两种配合物在双基发射药、三基发射药和双基推进剂中的燃烧作用。结果表明,ANPyO Ni(II)和Cu(II)两种配合物粒度都为微米级,爆速大于8 200m/s,爆压大于32GPa,优于TATB、HNS和PYX;两种含能配合物能够提高双基发射药的燃速,使其压强指数分别降低7.61%和3.29%,对双基发射药的燃烧性能具有明显的促进效果;ANPyO Cu(II)配合物使双基推进剂在10~20MPa下燃速提高20%,压强指数降低17.78%~55.84%,对双基推进剂的燃烧性能具有良好的催化效果。  相似文献   

3.
HTPB推进剂危险性实验研究   总被引:4,自引:1,他引:3  
依据联合国危险品分级方法,探讨了热刺激、机械刺激和冲击波刺激对低燃速HTPB推进剂、高燃速HTPB推进剂和四组元HTPB推进剂危险性的影响。结果表明,3种HTPB推进剂的热安定性良好,但对火焰热刺激均十分敏感,具有爆燃性;高燃速HTPB推进剂对机械刺激也极其敏感,摩擦感度(p)为96%,撞击感度特性(H50)为37.2 cm。在无约束条件下,3种HTPB推进剂裸药柱对雷管爆轰作用不敏感,而在钢管的强约束条件下,四组元HTPB推进剂对爆轰冲击波作用敏感,隔板值大于18mm。  相似文献   

4.
为进一步提高HTPB推进剂的能量并抑制铝粉在燃烧过程中的团聚,制备了铝粉质量分数为16%~22%的端羟基聚丁二烯(HTPB)推进剂,并分别加入含氟有机化合物(OF)作为铝燃烧促进剂,研究了铝含量和OF对HTPB推进剂燃烧性能的影响;使用氧弹量热仪测定了推进剂在氩气氛围下(3 MPa)的爆热;收集在3 MPa下推进剂燃烧的凝聚相产物,采用激光粒度仪、X射线光电子能谱仪(XPS)及X射线衍射仪(XRD)等分别对其进行粒度分布、元素和物相分析;通过线扫描摄像机和高压燃烧室系统测定推进剂的燃速;利用高速摄影系统观察推进剂燃面上熔铝粒子的团聚过程。结果表明,HTPB推进剂在铝粉质量分数为20%时实测爆热最大,含氟有机物OF的引入使得爆热有所下降;随着HTPB推进剂中铝含量的提高,燃面上熔铝粒子的团聚愈加严重,凝聚相燃烧产物的尺寸和残留铝含量均逐渐增加;加入含氟有机物OF能够促使-Al2O3和AlF3的生成,有效抑制铝颗粒在燃烧过程中的团聚,使凝聚相燃烧产物的尺寸和残留铝含量显著降低,当铝粉质量分数为20%时,OF的加入使得残留铝的生成率降低了50%;较低的铝含量和OF的添加有利于HTPB推进剂燃速的提高。  相似文献   

5.
正由于高低温下都具有良好的物理机械性能,以端羟基聚醚(HTPE)粘合剂为基的复合火箭推进剂配方已经成为一个新的推进剂系列。另外,HTPE推进剂已设计用来满足钝感弹药(IM)要求,尤其是用于符合IM的"慢速烤燃"试验以及满足用于战术导弹的要求。尽管HTPE被描述为一种新型粘合剂,但实际上早在20世纪50年代中期聚醚粘合剂就已用于配方中。聚醚粘合剂是端羟基无规共聚醚  相似文献   

6.
从端羟基聚醚(HTPE)的合成方法和HTPE推进剂的配方组成、工艺、燃烧特性、力学性能、热稳定性、钝感特性等方面综述了HTPE的合成和HTPE推进剂的应用进展。介绍了HTPE的主要合成方法离子开环聚合法和端基偶联法等。讨论了HTPE推进剂目前的研究重点,并对其未来的研究方向进行了展望。  相似文献   

7.
钝感推进剂配方研究及发展趋势   总被引:2,自引:0,他引:2  
从钝感黏合剂、钝感增塑剂、钝感高能填料以及新型复合材料等方面综述了国内外钝感固体推进剂配方及钝感方法进展。结果表明,HTPE黏合剂、BDNPF/A增塑剂、FOX-7高能填料以及HMX-TATB核-壳微粒等均可有效降低推进剂感度。今后钝感推进剂的重点研究方向主要为推进剂钝感机理、钝感推进剂能量与感度关系、钝感材料的匹配技术以及影响感度的综合因素等。  相似文献   

8.
BuNENA含能增塑剂的性能及应用   总被引:3,自引:0,他引:3  
BuNENA(N–丁基硝氧乙基硝胺)是一种性能优良的新型含能增塑剂,在枪炮发射药和火箭推进剂应用中均受到研究者的广泛关注,并被进行系统研究。在发射药中,BuNENA具有塑化能力强、工艺性能好、感度低、能量高等优点,能进一步提高配方力学性能,其应用前景广阔。而在HTPE(端羟基聚环氧乙烷–四氢呋喃嵌段共聚醚)火箭推进剂中,BuNENA已被证明是一种对提高能量、降低感度和提高推进剂力学性能等具有明显作用的新型含能增塑剂,使用HTPE/BuNENA黏合剂体系的钝感固体推进剂的综合性能优于HTPB/AP(端羟基聚丁二烯/高氯酸铵)推进剂,并可满足钝感弹药(IM)要求,已在各种战术发动机中获得了实际应用。  相似文献   

9.
含相稳定硝酸铵CMDB推进剂的机械感度和燃烧性能   总被引:1,自引:1,他引:0  
通过测试撞击感度、摩擦感度和燃速,研究了含相稳定硝酸铵(PSAN)的改性双基(CMDB)推进剂的燃烧性能和机械感度。结果表明,PSAN可改善CMDB推进剂的机械感度;用PSAN作氧化剂,其推进剂的燃速低于RDX作氧化剂的燃速,压强指数高于后者的压强指数;1~5MPa压力范围内随PSAN在配方中含量的增加,推进剂的燃速降低,压强指数升高。  相似文献   

10.
装药尺寸及结构对HTPE推进剂烤燃特性的影响   总被引:2,自引:0,他引:2  
利用自行设计的烤燃实验装置,对HTPE推进剂小尺寸烤燃试样分别进行了升温速率为1、2℃/min的烤燃实验,以此为基础,建立了小尺寸烤燃试样和固体火箭发动机的三维计算模型,利用Fluent软件分别对两者不同升温速率下的烤燃行为进行了数值模拟计算,研究了小尺寸烤燃试样与固体火箭发动机的装药尺寸及结构差异对HTPE推进剂烤燃响应特性的影响。结果表明,HTPE推进剂的烤燃响应时间、响应温度随升温速率的变化趋势与装药尺寸及结构无关,但响应时间和响应温度的绝对值与装药尺寸及结构均有很大关系,升温速率为3.3℃/h(0.055℃/min)时,小尺寸烤燃试样的响应时间为40.3h,响应温度为158℃,而固体火箭发动机响应时间为28.83h,响应温度为120.13℃。推进剂装药尺寸及结构对烤燃点火位置有明显影响,进而影响到烤燃速度范畴的区分,小尺寸烤燃试样慢烤升温速率不大于2℃/min,而固体火箭发动机慢烤升温速率为小于0.5℃/min。因此,对快速、慢速烤燃的严格划分,必须结合装药尺寸、装药结构及推进剂种类等因素进行。升温速率对固体火箭发动机存在热积累临界位置效应,本研究条件下影响热积累临界位置的升温速率为0.5℃/min。  相似文献   

11.
采用GJB772A-97方法704.2锰铜压力传感器法和GJB772A-97方法702.1电测法测试了6种2,4-二硝基苯甲醚(DNAN)基熔铸复合炸药的爆速和爆压及空中爆炸冲击波参数,通过计算得到配方中铝粉的反应度λ和反应区间长度L。结果表明,DNAN基熔铸复合炸药空中爆炸威力(Δp·I)与反应度和反应区间的乘积(λ·L)的大小关系一致。λ·L值越大,其爆炸威力越大。  相似文献   

12.
Al粉在高燃速AP/CMDB推进剂中的应用   总被引:3,自引:0,他引:3  
采用量热仪、燃速仪、PDSC分别研究了含不同粒度和含量Al粉的高燃速AP/CMDB推进剂的爆热、燃烧性能与热分解特性。结果表明,推进剂爆热与Al粉的含量成正比;Al粉质量分数为0~8%时,对推进剂燃烧性能无明显影响;Al粉粒度由14μm减小至5μm时,推进剂爆热降低40J/g,热分解放热量增加107J/g,7~10MPa压强下推进剂燃速提高1~1.8mm/s,7~22MPa下压强指数由0.56降至0.50;当Al粉(质量分数3%)粒度减小为150nm时,推进剂的爆热降低93J/g,热分解放热量增加343J/g,18~22MPa压强下的燃速提高2~3mm/s。  相似文献   

13.
含ADN推进剂的能量特性及综合性能   总被引:1,自引:0,他引:1  
为研究含二硝酰胺铵(ADN)推进剂的能量、安全、贮存及燃烧性能,根据最小自由能原理计算了含ADN推进剂的能量特性参数,采用密闭爆发器及靶线法测试其爆热及燃速,并对其吸湿性及感度进行了研究。结果表明,含ADN/Al/HMX、ADN/Al/CL-20、ADN/AlH3/HMX和ADN/AlH3/CL-20推进剂的标准理论比冲分别为2 675~2 685、2 677~2 686、2 801~2 810和2 803~2 812N·s·kg-1,采用硝酸酯增塑的惰性聚醚黏合剂体系可制备出固化正常、结构致密的含ADN推进剂。随着推进剂配方中ADN含量的增加,推进剂的爆热、吸湿性、燃速和压强指数增大,摩擦感度和撞击撞击提高,密度略有降低。  相似文献   

14.
为研究硼粉含量对镁/聚四氟乙烯(Mg/PTFE)富燃料推进剂性能的影响,采用混合模压成型工艺制备了7种不同硼粉含量的Mg/PTFE推进剂药柱。用红外测温仪、TG-DTA、量热仪分别测试其燃烧性能、热分解性能和爆热,并测试了其机械感度。结果表明,加入硼粉后,推进剂的燃烧性能明显改善,硼粉质量分数为15%时,线性燃速和质量燃速达到最高;当硼粉质量分数为20%时,燃烧温度达到最高;随着硼粉含量的增加,爆热稍微降低,完全燃烧热随着硼粉含量的增加而增大;当硼粉质量分数为10%时,高温放热峰温度降低128℃,撞击感度和摩擦感度达到最高值。  相似文献   

15.
为研究低铝含量推进剂的燃烧特性,以铝粉质量分数5%的低铝含量HTPB推进剂为对象,以铝粉质量分数12%~18%的HTPB推进剂为参比,通过水下声发射、BSFΦ75及BSFΦ165标准试验发动机等测试方法研究了低铝含量推进剂的燃烧性能和能量性能。结果表明,同一固含量条件下,低铝含量推进剂燃速较高,压强指数没有明显变化;铝粉粒度越细,低铝含量推进剂燃速和燃速压强指数越大;经BSFΦ75发动机内弹道p(压力)—t(时间)曲线验证,8~10MPa内低铝含量推进剂燃烧稳定;经BSFΦ165发动机试车验证,7MPa下,低燃速低铝含量推进剂实际比冲2387N·s/kg,比冲效率达到97.3%,高燃速低铝含量推进剂实际比冲2465N·s/kg,比冲效率达到98.6%。低铝含量推进剂燃烧效率高,相近燃速下低铝含量推进剂与常规铝含量推进剂能量在同一水平。  相似文献   

16.
为研究TKX-50对GAP基高能固体推进剂性能的影响,采用DSC-TG、50℃恒温贮存、摩擦感度、撞击感度、静电感度等方法研究了TKX-50与GAP基高能固体推进剂组分间安全性和相容性,并制备成TKX-50/GAP基高能固体推进剂药块,研究其密度、力学性能、安全性能、燃烧性能等,采用小型标准发动机研究其能量性能;通过DSC测试多种升温速率下的热分解性能,并使用Ozawa模型计算得到TKX-50的热分解活化能。结果表明,TKX-50与GAP黏合剂、AP、Al等相容性良好;TKX-50的热分解活化能为143.57kJ/mol;随着TKX-50含量的增加,25℃时TKX-50/GAP基高能固体推进剂的摩擦感度从100%降至44%,撞击感度从8.1J升至43.3J,静电感度变化不大,为16.0~42.0mJ;随着TKX-50含量的增加,25℃时TKX-50/GAP基高能固体推进剂的最大应力从0.65MPa降至0.35MPa,最大伸长率从25.5%升至34.33%,断裂伸长率从29.9%升至37.5%,模量从1.59MPa降至0.48MPa;低压段(3~9MPa)和高压段(12~25MPa)的燃速压强指数均呈现上升趋势,7MPa下静态燃速为17.2~18.0mm/s,低压段燃速压强指数为0.7~0.8,高压段燃速压强指数相对较高,最高达0.98。在6.86MPa下,动态燃速为21.07mm/s, BSFΦ165发动机实测比冲为256.7s。  相似文献   

17.
为考察六氯环三磷腈(HCCT)作为降速剂对RDX-CMDB推进剂燃速、安定性、爆热、机械感度、力学性能的影响,测试了HCCT与RDX-CMDB主要组分的相容性,并采用靶线法、甲基紫法、绝热法等测试了3种不同HCCT含量的RDX-CMDB推进剂的性能。结果表明,HCCT与RDX-CMDB推进剂主要组分NC+NG及RDX的相容性较好,HCCT的加入使推进剂在2~6MPa压强下燃速降低,燃速压强指数升高,爆热降低,摩擦感度和撞击感度降低,抗拉强度及延伸率基本不变,对推进剂的化学安定性没有影响。  相似文献   

18.
为改善高压强下HTPB推进剂的燃烧特性,研究了碳酸盐复合调节剂、二茂铁衍生物G、高氮化合物M、纳米铝粉和纳米金属氧化物对HTPB推进剂燃烧性能的影响.结果表明,碳酸盐复合调节剂能够降低推进剂的燃速和压强指数;二茂铁衍生物G能够提高推进剂的燃速,同时将推进剂在8.60~17.12MPa下的压强指数降至0.27;高氮化合物也可降低推进剂的燃速和压强指数;将高氮化合物M与二茂铁衍生物G配合使用可将推进剂在8.63~16.48MPa下的压强指数降至0.24; 纳米铝粉和包覆的纳米金属氧化物可明显降低推进剂的燃速压强指数.  相似文献   

19.
通过改变铝基合金燃料类型制备低铝含量推进剂,在此基础上进行铝基合金的粒度、形貌和推进剂的爆热、燃速测试,研究了不同铝基合金燃料对端羟基聚丁二烯(HTPB)推进剂工艺性能、燃烧性能及安全性能的影响。推进剂组分相同时,黏度数据表明,铝基合金的不规则形貌是引起推进剂工艺恶化的主要因素,粒度差异会使工艺性能有所不同;燃烧性能测试和爆热测试结果表明,添加铝基合金AN(铝-镍合金燃料)和AT(铝-钛合金燃料)后,与含球形铝粉推进剂相比,推进剂密度增加,燃速压强指数降低,爆热水平相当,燃烧性能得到了改善;添加铝基合金燃料后造成推进剂的摩擦感度上升。  相似文献   

20.
为研究DNTF-CMDB推进剂的性能,按照国军标方法测试了其能量、比容、燃烧性能、安全性能、力学性能和内弹道性能,并与HMX-CMDB推进剂的相关性能进行了比较。结果表明,DNTF-CMDB推进剂的比容较大、爆热和密度较小,其密度、爆热和比容分别为1.684g/cm3、4 586J/g和739L/kg;DNTF-CMDB推进剂可以实现平台燃烧,20~50℃的燃速温度敏感系数较大;对热刺激较为敏感,但机械感度较低;20℃和50℃时压缩率较高,分别为43.8%和46.4%,-40℃时抗压强度为175MPa。50mm发动机试验测得比冲约为2 162.7N·s/kg(10MPa)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号