首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to elaborate dehydration and osmotic equilibrium characteristics of cherry tomatoes and to analyse the applicability of Peleg model in prediction of equilibrium moisture content and the methodology of Crank’s solution to Fick’s diffusion law in calculation of effective diffusivity, cherry tomatoes were osmotically treated in ternary solution (water, sucrose and NaCl) with or without ultrasound at 30 °C. Results indicated that, a time cumulative effect of ultrasound occurred about 30 min for water loss (WL), while for sugar gain it happened after 45 min, which made the dehydration efficiency index best at the ultrasonic power of 150 W for 40 min. As a function of salt content, the equilibrium WL followed well the first order exponential decay model, and the equilibrium salt content followed well the second order polynomial. A great relative error (29.13%) between the practical determination and the predicted value indicated that Peleg model was not suitable for prediction of equilibrium moisture content. A great truncation error (865%) occurred when moisture effective diffusivity (6.66 × 10?9 m2 s?1) was calculated with Crank’s solution to Fick’s diffusion law by letting n = 1 as compared to that (0.77 × 10?9 m2 s?1) by letting n = 100.  相似文献   

2.
The aim of the present work is to study the kinetics of osmotic dehydration of Caldesi nectarines (Prunus persica var. nectarina) evaluating the effect of osmotic solution concentration, type of solute, temperature, fruit/solute ratio and process time on moisture content, water loss, soluble solids content and solids gain. The process analysis was carried out experimentally and numerically through the mathematical modelling of mass transfer. Hypertonic solutions of glucose syrup and sorbitol (40 and 60 % w/w) were used for dehydration, during 2 h of process at temperatures of 25 and 40 °C, with fruit/osmotic agent ratio of 1:4 and 1:10. Water loss and solids gain showed significant differences depending on the type and concentration of the osmotic agent, process time and fruit/solution ratio. The concentration interacted significantly with all variables; in addition, there was an interaction between the type of osmotic agent and the relationship between fruit and the osmotic agent. The effective diffusion coefficients were obtained from the analytical solution of Fick’s second law applied to flat-plate geometry and by solving the mass transfer microscopic balances by finite element method, taking into account the real geometry of the nectarine pieces. The values obtained from Fick’s law varied between 1.27?×?10?10 and 1.37?×?10?08?m2?s?1 for water and from 1.14?×?10?10 to 1.08?×?10?08?m2?s?1 for soluble solids, while the values calculated by finite elements method ranges were between 0.70?×?10?09 and 4.80?×?10?09?m2?s?1 for water and between 0.26?×?10?09 and 1.70?×?10?09?m2?s?1 for soluble solids. The diffusion coefficients values obtained from the numerical solution are consistent with those published in literature.  相似文献   

3.
This work presents a study of the mass transfer of osmotically dehydrated West Indian cherry, also known as acerola. The experiments were performed by immersing the fruits in a sucrose solution at 65ºBrix for 12 h at ambient temperature (27 °C), using three different fruit:solution ratios (1:4; 1:10 and 1:15 (w:w)). The kinetics of water loss, solids gain and weight reduction was determined. Effective mass diffusivity was calculated by the inverse method, using the Levenberg‐Marquardt minimisation algorithm. The mathematical model used to describe the physical phenomenon of osmotic dehydration was based on Fick’s Second Law, considering the fruits as geometrically perfect spheres. The influence of the fruit:solution ratio was not significant in the range of this study. Diffusivity ranged from 1.558 × 10?10 to 1.760 × 10?10 m2 s?1.  相似文献   

4.
ESTIMATION OF MOISTURE LOSS FROM THE COOLING DATA OF POTATOES   总被引:1,自引:0,他引:1  
A procedure was developed to predict moisture loss from cooling data of potato packed in gunny bags and stacked on wooden platforms in commercial cold stores. To predict the moisture loss, mass transfer coefficients kcand kmwere estimated during the storage period, which were found to decrease with time. The calculated time average kcand kmvalues were 1.83 × 10?4 m/s and 2.31 × 10?10 kg/s·m2·Pa during the transient cooling period and 1.59 × 10?4 m/s and 2.27 × 10?10 kg/s·m2·Pa for the rest of the storage period, respectively. The estimated moisture losses were 4.8, 4.74 and 4.78%, at the center of three different stacks, for a storage period of 8 months. The corresponding experimentally measured weight losses at the center of the same stacks were 5.2, 5.1 and 5.26% with a variation of 11, 7.5 and 10.2%, respectively. Therefore, the procedure adopted in this study may be used to assess the moisture loss from potatoes under the different storage conditions. The effect of relative humidity (RH) and potato temperature on moisture loss was also predicted using the developed procedure. Decrease in RH of the storage air increased the moisture loss. The potatoes stored below 85% RH incurred more than 7% water loss. Therefore, 88–90% RH in the cold store may be used to limit the maximum moisture loss within the permissible limit of 5% even after 8 months of storage. It was also found that increasing the potato temperature exponentially increased the rate of moisture loss.  相似文献   

5.
The combination of hot air drying and frying to reduce oil uptake in chicken nuggets was analysed. Two air velocities (2 and 4 m s?1) and two dry bulb temperatures (44 and 61 °C) were employed in the drying process, as a treatment before or after deep‐fat frying at 160 °C for 90 s in fresh soybean oil. The lowest fat content was obtained by frying followed of drying at 61 °C with air velocity of 2 m s?1. When drying was applied before frying, mass transfer (moisture loss) during the drying process was modelled according to Fick’s second law; diffusion coefficients ranged between 1.03 and 3.33 × 10?6 m2 s?1. When drying was applied after frying, a constant rate period was observed during drying process, with velocities between 0.002 and 0.02 kgwater/kgdry solids·min. Scanning electron microscopy (SEM) allowed to observe differences in the topography of chicken nuggets obtained from frying or the combination of frying and drying.  相似文献   

6.
The diffusion of acetic or propionic acids from thin (44 to 54 μm) chitosan‐based antimicrobial packaging films in which they were incorporated was measured after immersion of the films in water, and the effects of pH (5.7, 6.4, or 7.0) and temperature (4 °C, 10 °C, or 24 °C) on diffusion were investigated. The kinetics of acetic‐ and propionic‐acid release deviated from the Fickian model of diffusion. Diffusion was found to be unaffected by pH in the range of values tested, but a decrease in temperature from 24 °C to 4 °C resulted in a reduction of diffusion coefficients from 2.59 × 10?12 m2.s?1 to 1.19 × 10?12 m2.s?1 for acetic acid and from 1.87 × 10?12 m2.s?1 to 0.91 × 10?12 m2.s?1 for propionic acid. The effect of temperature on diffusion was well (r2 > 0.9785) described by an Arrhenius‐type model with activation energies of 27.19 J.mole?1 (acetic) and 24.27 J.mole?1 (propionic). Incorporation of lauric acid or essential oils (cinnamaldehyde or eugenol) into the chitosan film at the time of preparation produced a subsequent reduction in the diffusion of acetic or propionic acid, and maximum effects were obtained with lauric acid and cinnamaldehyde incorporated to final concentrations of 1.0% and 0.5% (w/w), respectively.  相似文献   

7.
This paper details the results of a series of tests whose main purpose was to determinate how osmotic drying influences both water loss and color retention in cactus pear fruits. The dehydration process was performed using a 32 experimental design which involved three different sugar concentration levels (40, 50, and 608Brix) and three different temperatures (25, 40, and 558C). A product/solution ratio of 1/15, cactus pear cylindrical slices 5 mm thick, and ten-hour immersion time spans were used for all the experiments. Modeling of the drying curves was done with Fick's second law and Page's equation, which were used to calculate water effective diffusivity (De), drying constant (k), and the b values respectively. The color parameters (L*, a*, b*) of the samples were measured before and after each test to evaluate total color change (ΔE). An analysis of variance (ANOVA) revealed that water diffusivity and Page's parameter b were affected by temperature and sugar concentration while the drying constant (k) was independent of the drying conditions. The total color change was affected only by the temperature. De and b values varied from 4.06×10?11 to 2.95×10?10 m2/s, and from 0.453 to 0.861 respectively. The best color retention was obtained at 25°C independent of the sugar concentration.  相似文献   

8.
Ascorbic acid (AA) degradation and colour changes, measured by the lightness index (L*), were determined in cashew apples (at low dissolved O2 concentrations) heated at high temperature (100–180 °C) in a hermetically sealed cell. A nonisothermal method was developed to estimate thermal degradation kinetics. The results showed that reaction kinetics during heat treatments were well represented by first‐order reactions. The temperature dependence of the kinetic constants was described by an Arrhenius type equation. The activation energy (Ea) for AA degradation and lightness index were 94 ± 3 and 98 ± 3 kJ mol?1, respectively. The reaction rate constant at 140 °C for AA degradation (64 × 10?5 ± 3 × 10?5 s?1) was twice that for the lightness index change (33 × 10?5 ± 2 × 10?5 s?1). Results allow generating temperature profiles of heat processes that would help preserve the AA of cashew apples as well as control the colour formation during high‐temperature processes.  相似文献   

9.
10.
A simple mathematical model to predict dehydration and impregnation process during osmotic dehydration of orange‐fleshed honeydew in sucrose and corn syrup solutions was proposed. Results showed low dispersion and a good fitting capability for WL and SG kinetics. Diffusivity values for WL ranged from 0.96 × 10?10 to 2.22 × 10?10 and 1.04 × 10?10 to 3.10 × 10?10 m2 s?1 in corn syrup and sucrose solutions, respectively. For SG, the obtained range was 0.72 × 10?10 to 2.35 × 10?10 and 0.71 × 10?10 to 2.46 × 10?10 m2 s?1 in corn syrup and sucrose solutions, respectively. The half‐life of dehydration rates (t1/2) was from 30.9 to 71.2 min and from 19.4 to 57.5 min in corn syrup and sucrose solutions, respectively. Diffusivities values obtained according to the proposed model were close to the ones observed from diffusive model; t1/2 was a promising criterion for the process time definition.  相似文献   

11.
The migration of five different photoinitiators from kraft paper to two fatty food simulants, Tenax® and 95% ethanol, was investigated under different conditions. The effects of temperature and storage time, as well as the physicochemical properties of the photoinitiators on migration, were discussed. Mathematical models based on Fick’s second law generated from two cases, single- and two-side contacts, were applied to predict the migration behaviour from the paper to the food simulants. The partition coefficients estimated from the model decreased with temperature. The diffusion coefficients of the selected photoinitiators from the paper ranged from 1.55 × 10–10 to 7.54 × 10–9 cm2 s?1 for Tenax and from 2.79 × 10–9 to 8.03 × 10–8 cm2 s?1 for 95% ethanol. The results indicate that the applied model can predict the migration of photoinitiators in the initial short period before equilibrium, and the migration from paper to Tenax through a single-side contact demonstrated an especially high concordance.  相似文献   

12.
BACKGROUND: The investigation of drying kinetics and mass transfer phenomena is important for selecting optimum operating conditions, and obtaining a high quality dried product. Two analytical models, conventional solution of the diffusion equation and the Dincer and Dost model, were used to investigate mass transfer characteristics during combined microwave‐convective drying of lemon slices. Air temperatures of 50, 55 and 60 °C, and specific microwave powers of 0.97 and 2.04 W g?1 were the process variables. RESULTS: Kinetics curves for drying indicated one constant rate period followed by one falling rate period in convective and microwave drying methods, and only one falling rate period with the exception of a very short accelerating period at the beginning of microwave‐convective treatments. Applying the conventional method, the effective moisture diffusivity varied from 2.4 × 10?11 to 1.2 × 10?9 m2 s?1. The Biot number, the moisture transfer coefficient, and the moisture diffusivity, respectively in the ranges of 0.2 to 3.0 (indicating simultaneous internal and external mass transfer control), 3.7 × 10?8 to 4.3 × 10?6 m s?1, and 2.2 × 10?10 to 4.2 × 10?9 m2 s?1 were also determined using the Dincer and Dost model. CONCLUSIONS: The higher degree of prediction accuracy was achieved by using the Dincer and Dost model for all treatments. Therefore, this model could be applied as an effective tool for predicting mass transfer characteristics during the drying of lemon slices. © 2012 Society of Chemical Industry  相似文献   

13.
Biodegradable and edible films were prepared from three types of wheat flours: commercial bread, hard red winter, and soft white. Films were produced at two pH values (4 and 11) and tested for oxygen permeability as related to temperature. Films were also produced with a cross-linked agent and tested for tensile strengths. Oxygen permeability was 5.9 × 10?20 to 18.5 × 10?20 m3O2 m m?2 s?1 Pa?1 similar to values for commercial nylon. The oxygen permeability activation energy varied from 9.1 to 14.5 kcal mol?1, depending on type of flour and pH did not affect oxygen permeability. Presence of the cross-linking agent increased the strength of films and elongation at break ranged from 490% to 640%, while tensile stress at break ranged from 25.8 × 10?3 kg m?2 to 44.1 × 10?3 kg m?2, lower than commercial nylon.  相似文献   

14.
The aim was to evaluate the kinetic parameters, total color differences (?E*) and browning index differences (?BI) of air flow pineapple drying. The experiments were performed on air temperatures at 60 and 70 °C, and air velocities at 1.5 and 2.0 m/s. The kinetic parameter (k) increased when air temperature was increased for all air velocity. The effective diffusivity coefficient (Deff) increased as high as the temperature of the heating medium. The variation of Deff of swirling flow was ranging from 6.72?×?10?9 to 10.23?×?10?9 m2/s, while the variation of Deff of non-swirling flow was ranging from 6.40?×?10?9 to 9.42?×?10?9 m2/s. The drying time of swirling flow was shorter than non-swirling flow in each drying condition. Moreover, the ?E* and ?BI of pineapple in swirling flow were lower than that obtained from non-swirling flow. Therefore, the convective drying using swirling flow can be minimized for drying time and color deterioration.  相似文献   

15.
Rehydration of air‐dried Boletus edulis mushrooms was investigated at six temperatures (25, 30, 40, 50, 60 and 70 °C). To describe the rehydration kinetics, two empirical equations, Peleg and Weibull, and a diffusion model for a slab were considered. The empirical models described the rehydration process properly, while the diffusion model also described experimental data adequately when considering the moisture‐dependent effective diffusion coefficient. The equilibrium moisture content increased in line with temperature up to 60 °C, then decreased. The kinetics constants of the Peleg and Weibull models, k1 and β respectively, were affected by temperature. This influence of temperature can be expressed in term of an Arrhenius relationship, with an average activation energy of 19.2 kJ mol?1. Copyright © 2005 Society of Chemical Industry  相似文献   

16.
An α‐l ‐rhamnosidase secreted by Penicillium citrinum MTCC‐8897 has been purified to homogeneity from the culture filtrate of the fungal strain using ammonium sulphate precipitation and cation‐exchange chromatography on carboxymethyl cellulose. The sodium dodecyl sulphate/polyacrylamide gel electrophoresis analysis of the purified enzyme gave a single protein band corresponding to the molecular mass 51.0 kDa. The native polyacrylamide gel electrophoresis also gave a single protein band confirming the enzyme purity. The Km and Vmax values of the enzyme for p‐nitrophenyl α‐l ‐rhamnopyranoside were 0.36 mm and 22.54 μmole min?1 mg?1, respectively, and kcat value was 17.1 s?1 giving kcat/Km value of 4.75 × 104 m ?1 s?1. The pH and temperature optima of the enzyme were 7.0 and 60 °C, respectively. The purified enzyme liberated l ‐rhamnose from naringin, rutin, hesperidin and wine, indicating that it has biotechnological application potential for the preparation of l ‐rhamnose and other pharmaceutically important compounds from natural glycosides containing terminal α‐l ‐rhamnose and also in the enhancement of wine aroma.  相似文献   

17.
The kinetics of adsorption of patulin on activated carbon were studied at different initial patulin concentrations (100–400 ppb) for the temperature range 20–80°C. Apparent adsorption rate constants (kaapp) were changed from 1.07 × 10?3 to 1.86 × 10?3 g?1 min?1 while the temperature increased from 20 to 80°C. For equilibrium adsorption curves; the Langmuir model was attempted and model parameters (K and Q°) were obtained for different temperatures. Energy of activation and heat of adsorption were determined in a batch adsorption system (Ea= 2.02 kcal/mol and ΔH = 2.24 kcal/mol). The adsorption occurred endothermically and by physical mechanisms.  相似文献   

18.
The main purpose of this work was to study water loss, solids gain, and weight and moisture reduction during the osmotic dehydration process of the West Indian cherry (Malpighia punicifolia). The diffusion coefficient of West Indian cherry was estimated by the inverse method using average moisture contents. Osmotic dehydration was examined for 12 h in a 65°Brix solution at temperature of 27 °C, without agitation, using a fruit:solution mass ratio of 1:4, 1:10, and 1:15. The kinetics and internal changes occurring during the osmotic dehydration of West Indian cherry are reported. The product’s drying kinetics was simulated using the diffusion model, and two optimization methods, Levenberg–Marquardt and Differential Evolution algorithm, were used to predict the diffusion coefficient. The results indicated that the two optimization methods performed similarly in estimating the diffusion coefficient adequately. The average calculated diffusion coefficient was 1.663 × 10?10 m2s?1, which is consistent with values reported in the literature.  相似文献   

19.
In this paper, experimental kinetics of vanilla pods’ solid–liquid extraction were obtained by three different methods: with agitation, without agitation, and microwave-assisted (MAE) without agitation. The extraction kinetics of aroma compounds (vanillin, p-hydroxybenzaldehyde, and p-hydroxybenzoic acid) was measured in vanilla pods (refined) and extracts by high-performance liquid chromatography. Additionally, the equilibrium distribution of aroma compounds between phases and the retained solution by refined pods were experimentally evaluated. A mechanistic model of two simultaneous algebraic equations was fitted to experimental data in order to estimate the aroma compound diffusivities inside the pods and mass transfer coefficients in the extract. The diffusivities in vanilla pods at 50 °C were 4.31?×?10?11, 2.93?×?10?11, and 3.50?×?10?11?m2?s?1 for vanillin, p-hydroxybenzaldehyde, and p-hydroxybenzoic acid, respectively. External mass transfer coefficients were in the order of 1.0?×?10?4?m?s?1 for forced convection extraction and MAE and 3.33?×?10?7?m?s?1 for natural convection extraction.  相似文献   

20.
In this study, the effect of ultrasonic pre-treatment on osmotic dehydration of kiwi slices was investigated. Kiwi fruit slices were subjected to ultrasonic pre-treatment in a sonication water bath at a frequency of 25 kHz for 20 min. Osmotic dehydration of ultrasonic pre-treated samples were conducted for a period of 300 min in 60 Brix sucrose solution. The kinetics of moisture loss and solute gain during osmotic dehydration were predicted by fitting the experimental data with Azuara's model and Weibull's model. The effects of ultrasound application on water loss, sugar gain, effective moisture diffusivity and solute diffusivity of the samples were analysed. The osmotic dehydration process showed a rapid initial water loss followed by a progressive decrease in the rates in the later stages. From the Azuara's model, the predicted equilibrium water loss value for ultrasound pre-treated sample was 58.4% (wb) at 60°C that was nearly 16% higher than the samples treated under atmospheric conditions. Fitting of Weibull model showed that the ultrasound pre-treated and untreated samples had shape parameter (βw) ranging between 0.570–0.616 and 0.677–0.723 respectively. The lower values of shape parameter indicated that sonication caused accelerated water loss resulting faster dehydration rate. Results indicated that the effective moisture diffusivity and solute diffusivity was enhanced in ultrasonic pre-treated samples. The effective moisture diffusivity during osmotic dehydration of ultrasonic pre-treated samples was ranged between 5.460×10−10–7.300×10−10 m2/s and solute diffusivity was varied between 2.925×10−10–3.511×10−10 m2/s within the temperature range 25–60 °C. The enhanced moisture and solute diffusivity in ultrasound pre-treated kiwi slices was due to cell disruption and formation of microscopic channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号