首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This research investigated the morphological, morphometric, and ultrastructural cardiomyocyte characteristics of male Wistar rats at 18 months of age. The animals were euthanized using an overdose of anesthesia (ketamine and xylazine, 150/10 mg/kg) and perfused transcardially, after which samples were collected for light microscopy, transmission electron microscopy, and high‐resolution scanning electron microscopy. The results showed that cardiomyocyte arrangement was disposed parallel between the mitochondria and the A‐, I‐, and H‐bands and their M‐ and Z‐lines from the sarcomere. The sarcomere junction areas had intercalated disks, a specific structure of heart muscle. The ultrastructural analysis revealed several mitochondria of various sizes and shapes intermingled between the blood capillaries and their endothelial cells; some red cells inside vessels are noted. The muscle cell sarcolemma could be observed associated with the described structures. The cardiomyocytes of old rats presented an average sarcomere length of 2.071 ± 0.09 μm, a mitochondrial volume density (Vv) of 0.3383, a mitochondrial average area of 0.537 ± 0.278 μm2, a mitochondrial average length of 1.024 ± 0.352 μm, an average mitochondrial cristae thickness of 0.038 ± 0.09 μm and a ratio of mitochondrial greater length/lesser length of 1.929 ± 0.965. Of the observed mitochondrial shapes, 23.4% were rounded, 45.3% were elongated, and 31.1% had irregular profiles. In this study, we analyzed the morphology and morphometry of cardiomyocytes in old rats, focusing on mitochondria. These data are important for researchers who focus the changes in cardiac tissue, especially changes owing to pathologies and drug administration that may or may not be correlated with aging. Microsc. Res. Tech., 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

2.
The adsorption and aqueous lubricating behaviour of poly(l ‐lysine)‐graft‐poly(ethylene glycol) (PLL‐g‐PEG) have been investigated for tribopairs involving thermoplastic materials, including polypropylene, polyamide‐6,6 and polyethylene. A major finding is that PLL‐g‐PEG adsorbs onto both hydrophobic, non‐polar surfaces and hydrophilic, polar (negatively charged) surfaces from aqueous solution, and thus plays as a very unique and effective aqueous boundary lubricant additive for the sliding contact of thermoplastics against themselves as well as against many hydrophilic, polar materials, including metals (e.g. stainless steel) or ceramics (e.g. zirconia, ZrO2). Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
Nitric oxide (NO) is produced by nitric oxide synthases (NOSs) and plays an important role in all levels of reproduction from the brain to the reproductive organs. Recently, it has been discovered that all germ cells and Leydig cells in the cat testis exhibit stage‐dependent nuclear and cytoplasmic endothelial (eNOS) and inducible (iNOS)‐NOS immunoreactivity and cytoplasmic nicotinamide adenine dinucleotide phosphate‐diaphorase (NADPH‐d) reactivity. As a continuation of this finding, in this study, cellular localization of NADPH‐d and immunolocalization and expression of all three NOS isoforms were investigated in the intratesticular (tubuli recti and rete testis), and excurrent ducts (efferent ductules, epididymal duct and vas deferens) of adult cats using histochemistry, immunohistochemistry and western blotting. NADPH‐d activity was found in the midpiece of the spermatozoa tail and epithelial cells of all of ducts, except for nonciliated cells of the efferent ductules. Even though the immunoblotting results revealed similar levels of nNOS, eNOS and iNOS in the caput, corpus and cauda segments of epididymis and the vas deferens, immunostainings showed cell‐specific localization in the efferent ductules and region‐ and cell‐specific localization in the epididymal duct. All of three NOS isoforms were immunolocalized to the nuclear membrane and cytoplasm of the epithelial cells in all ducts, but were found in the tail and the cytoplasmic droplets of spermatozoa. These data suggest that NO/NOS activity might be of importance not only for the functions of the intratesticular and excurrent ducts but also for sperm maturation. Microsc. Res. Tech. 79:192–208, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

4.
Poly(dl ‐lactide‐co‐glycolide) powder composed of uniform particles with the mean particle size in the range of 110–170 nm was obtained from commercial granules. Ascorbic acid in different concentrations was encapsulated into the poly(dl ‐lactide‐co‐glycolide) particles. Degradation of the latter in terms of morphological changes in the physiological solution was followed. Within a period of 2 months, the particles completely degrade and all the ascorbic acid is released. The samples were characterized by ultraviolet spectroscopy and scanning electron microscopy.  相似文献   

5.
Diabetic cardiomyopathy, i.e. the ventricular dysfunction in the absence of hypertension or coronary arterial disease, is a common complication of diabetes mellitus that leads to a heightened risk of heart failure and death among diabetic patients. This contractile dysfunction could be associated to mitochondrial dysfunction, in which mitochondrial biogenesis could emerge as a compensatory mechanism triggered in response to hyperglycemia. It has been proposed that nitric oxide synthase activities with enhanced NO production are involved in this process. Alterations in the contractile response and lusitropic reserve were observed in streptozotocin diabetic rats after β-adrenergic stimuli. Additionally, tissue O2 consumption was declined. A condition of mitochondrial dysfunction with decreased mitochondrial state 3 O2 consumption, respiratory control ratio, mitochondrial respiratory complexes activities and ATP production were present in hearts of diabetic animals. We observed an increase in NO production by heart mitochondria and in cytochrome oxidase activity in heart homogenates. The latter suggests an increase of newly formed mitochondria. Thus, the impairment of mitochondrial function with increased mitochondrial biogenesis may precede the onset of diabetic cardiomyopathy. However, mitochondrial biogenesis does not necessarily imply that the resultant mitochondria are functional, which might explain the changes in cardiac energy metabolism occurring in hearts of diabetic rats.  相似文献   

6.
Bites by Bothrops snakes normally induce local pain, haemorrhage, oedema and myonecrosis. Mammalian isolated nerve‐muscle preparations exposed to Bothrops venoms and their phospholipase A2 toxins (PLA2) can exhibit a neurotoxic pattern as increase in frequency of miniature end‐plate potentials (MEPPs) as well as in amplitude of end‐plate potentials (EPPs); neuromuscular facilitation followed by complete and irreversible blockade without morphological evidence for muscle damage. In this work, we analysed the ultrastructural damage induced by Bothrops jararacussu and Bothrops bilineatus venoms and their PLA2 toxins (BthTX‐I and Bbil‐TX) in mouse isolated nerve‐phrenic diaphragm preparations (PND). Under transmission electron microscopy (TEM), PND preparations previously exposed to B. jararacussu and B. bilineatus venoms and BthTX‐I and Bbil‐TX toxins showed hypercontracted and loosed myofilaments; unorganized sarcomeres; clusters of edematous sarcoplasmic reticulum and mitochondria; abnormal chromatin distribution or apoptotic‐like nuclei. The principal affected organelles, mitochondria and sarcoplasmic reticulum, were those related to calcium buffering and, resulting in sarcomeres and myofilaments hypercontraction. Schwann cells were also damaged showing edematous axons and mitochondria as well as myelin sheath alteration. These ultrastructural changes caused by both of Bothrops venoms and toxins indicate that the neuromuscular blockade induced by them in vitro can also be associated with nerve and muscle degeneration.  相似文献   

7.
Oily secretions from the back skin are involved in the marking behavior of male brown bears (Ursus arctos), and apocrine glands in back skin are activated during the breeding season. Here, we investigated seasonal changes in the intracellular organelles of apocrine gland cells in the back skin of male brown bears using transmission electron microscopy (TEM) and osmium‐maceration scanning electron microscopy (OM‐SEM). The morphological features of mitochondria and intracellular granules, and secretory mechanisms obviously differed between breeding and non‐breeding seasons. The TEM findings showed that contents of low‐density granules were released into the glandular lumen by frequent exocytosis, and sausage‐shaped mitochondria were located in the perinuclear region during the non‐breeding season. In contrast, high‐density granules appeared in the apical region and in projections during the breeding season, and swollen mitochondria and lysosome‐like organelles separating into high‐density granules were located in the perinuclear region. The OM‐SEM findings revealed swollen mitochondria with only a few partially developed cristae, and small mitochondria with cristae shaped like those in swollen mitochondria in the apical regions during the breeding season. These findings indicated that the small mitochondria corresponded to the high‐density granules identified by TEM. These findings suggested that mitochondria in apocrine gland cells swell, degenerate, fracture into small pieces, and are finally released by apocrine secretions during the breeding season. Small mitochondria released in this secretory manner might function as the source of chemical signals in the oily secretions of brown bears during the breeding season.  相似文献   

8.
Although no specific antiviral tablets or injections that can kill the dengue virus are currently available, adequate care and treatment could control its morbidity. Interaction of dengue virus to target cells could be an important feature for virus propagation. Ultrastructural analysis of this interaction was studied with vero cells. Vero cells were treated with Dengue virus type‐2 at different time intervals at multiplicity of infection (m.o.i) < 10, m.o.i > 10, and m.o.i = 100. It was found that m.o.i < 10 is best to study morphological changes. At an m.o.i > 10 apoptosis occurs and at m.o.i. = 100, cell necrosis occurs. While studying morphological changes, it was found that at 30 min postinfection cells have morphology very similar to that of the control cells although some have irregular outline and show cytoplasmic projections and intense cytoplasmic vacuolization. After 1–12 hours postinfection (h.p.i), the nuclei ran from normal looking to diffuse. Nuclear membrane begins to disintegrate. Some nucleoli are difficult to be seen. The cytoplasm appears as a mottled, lumps diffuse mass distributed throughout the cytosol, with dense lysosomes and myelin figures, also in the mitochondria. In later hours (24 h.p.i), the intranuclear euchromatin is dispersed and heterochromatin forms peripheral clumps. The cytoplasmic processes are short and few in numbers. A proportion of damaged mitochondria with disrupted cristae appear, suggesting that dengue virus may induce mitochondrial dysfunction and nucleus and mitochondria may be the primary organelles helping in dissemination of virus. Microsc. Res. Tech. 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

9.
In the present paper we applied confocal microscopy and fluorescence technologies for studying the distribution and the oxidative activity of sea urchin (Paracentrotus lividus) mitochondria during development, by in vivo incubating eggs and embryos with cell‐permeant MitoTracker probes. We calculated, by a mathematical model, the intensity values, the variations of intensity, and the variation index of incorporated fluorochromes. Data demonstrate that mitochondrial mass does not change during development, whereas mitochondrial respiration increases. In addition, starting from 16 blastomeres stage, some regions of the embryo contain organelles more active in oxygen consumption.  相似文献   

10.
Ketogenic diets (KDs) have shown beneficial effects in experimental models of neurodegeneration, designating aged individuals as possible recipients. However, few studies have investigated their consequences on aging brain. Here, late‐adult rats (19 months of age) were fed for 8 weeks with two medium chain triglycerides‐supplemented diets (MCT‐SDs) and the average area (S), numeric density (Nvs), and surface density (Sv) of synapses, as well as the average volume (V), numeric density (Nvm), and volume density (Vv) of synaptic mitochondria were evaluated in granule cell layer of the cerebellar cortex (GCL‐CCx) by computer‐assisted morphometric methods. MCT content was 10 or 20%. About 10%MCT‐SD induced the early appearance of senescent patterns (decreased Nvs and Nvm; increased V), whereas 20%MCT‐SD caused no changes. Recently, we have shown that both MCT‐SDs accelerate aging in the stratum moleculare of CA1 (SM CA1), but are “antiaging” in the outer molecular layer of dentate gyrus (OML DG). Since GCL‐CCx is more vulnerable to age than OML DG but less than SM CA1, present and previous results suggest that the effects of MCT‐SDs in the aging brain critically depend on neuronal vulnerability to age, besides MCT percentage. Microsc. Res. Tech. 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

11.
Most cellular organelles are highly dynamic and continuously undergo membrane fission and fusion to mediate their function. Documenting organelle dynamics under physiological conditions, therefore, requires high temporal resolution of the recording system. Concurrently, these structures are relatively small and determining their substructural organization is often impossible using conventional microscopy. Structured Illumination Microscopy (SIM) is a super resolution technique providing a two‐fold increase in resolution. Importantly, SIM is versatile because it allows the use of any fluorescent dye or protein and, hence, is highly applicable for cell biology. However, similar to other SR techniques, the applicability of SIM to high‐speed live cell imaging is limited. Here we present an easy, straightforward methodology for coupling of high‐speed live cell recordings, using spinning disk (SD) microscopy, with SIM. Using this simple methodology, we are able to track individual mitochondrial membrane fission and fusion events in real time and to determine the network connectivity and substructural organization of the membrane at high resolution. Applying this methodology to other cellular organelles such as, ER, golgi, and cilia will no doubt contribute to our understanding of membrane dynamics in cells. Microsc. Res. Tech. 78:777–783, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

12.
In the present work, the characterization and gas sensing properties of newly synthesized N‐(4‐methylpyrimidine‐2‐yl)methacrylamide ( N‐MPMA ) monomer Langmuir–Blodgett (LB) thin films were investigated. The UV–visible spectroscopy, quartz crystal microbalance (QCM), and atomic force microscopy were utilized to characterize N‐MPMA LB thin films. The surface behavior of N‐MPMA monolayer was stable and allowed an effective transfer at a surface pressure of 14 mN/m. The mass change/unit area value of the N‐MPMA LB thin film deposited quartz crystal surfaces was investigated. The amount of N‐MPMA LB thin film deposited on the substrate for bilayer was calculated as 228.72 ng (86.31 ng/mm2) and 12.5 Hz frequency shift was observed for each layer of the N‐MPMA film. The kinetic responses of N‐MPMA LB film against chloroform, dichloromethane, benzene, and toluene were measured via QCM system at room temperature. N‐MPMA QCM sensor results displayed that chloroform has the largest frequency shifts compared with the other vapors used in the present work and these results can be illuminating in terms of physical properties of organic vapors.  相似文献   

13.
Normal cardiac function is accomplished through a continuous energy supply provided by mitochondria. Heart mitochondria are the major source of reactive oxygen and nitrogen species: superoxide anion (O2-) and nitric oxide (NO). NO production by mitochondrial NOS (mtNOS) is modified by metabolic state and shows an exponential dependence on Δψ. The interaction between mtNOS and complexes I and IV might be a mechanism involved in the regulation of mitochondrial NO production. NO exerts a high affinity, reversible and physiological inhibition of cytochrome c oxidase activity. A second effect of NO on the respiratory chain is accomplished through its interaction with ubiquinol-cytochrome c oxidoreductase. The ability of mtNOS to regulate mitochondrial O2 uptake and O2- and H2O2 productions through the interaction of NO with the respiratory chain is named mtNOS functional activity. Together, heart mtNOS allows NO to optimize the balance between cardiac energy production and utilization, and to regulate the steady-state concentrations of other oxygen and nitrogen species.  相似文献   

14.
In a previous study, the dislocations in Fe30Ni20Mn25Al25 (at. %), which consist of 50 nm wide alternating b.c.c. and B2 phases, were shown to have a/2<111> Burgers vectors after room temperature deformation. The dislocations were found to glide in pairs on both {110} and {112} slip planes and were relatively widely separated in the b.c.c. phase, where the dislocations were uncoupled, and closely spaced in the B2 phase, where the dislocations were connected by an anti‐phase boundary. In this article, we analyze the dislocations in the two ~5 nm‐wide B2 phases in a related two‐phase alloy Fe30Ni20Mn20Al30, with compositions Fe‐23Ni‐21Mn‐24Al and Fe‐39Ni‐12Mn‐34Al, compressed to ~3% strain at a strain rate 5 × 10?4 s?1 at 873 K (the lowest temperature at which substantial plastic flow was observed). It is shown that slip occursby the glide of a<100> dislocations. A review of the literature suggests that the differences in the observed slip vector between these B2 phases could be due to the differences in composition, differences in deformation temperature, or possibly both. Microsc. Res. Tech. 76:263–267, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

15.
Biofilms are frequently related to invasive fungal infections and are reported to be more resistant to antifungal drugs than planktonic cells. The structural complexity of the biofilm as well as the presence of a polymeric extracellular matrix (ECM) is thought to be associated with this resistant behavior. Scanning electron microscopy (SEM) after room temperature glutaraldehyde‐based fixation, have been used to study fungal biofilm structure and drug susceptibility but they usually fail to preserve the ECM and, therefore, are not an optimised methodology to understand the complexity of the fungal biofilm. Thus, in this work, we propose a comparative analysis of room‐temperature and cryofixation/freeze substitution of Candida albicans biofilms for SEM observation. Our experiments showed that room‐temperature fixative protocols using glutaraldehyde and osmium tetroxide prior to alcohol dehydration led to a complete extraction of the polymeric ECM of biofilms. ECM from fixative and alcohol solutions were recovered after all processing steps and these structures were characterised by biochemistry assays, transmission electron microscopy and mass spectrometry. Cryofixation techniques followed by freeze‐substitution lead to a great preservation of both ECM structure and C. albicans biofilm cells, allowing the visualisation of a more reliable biofilm structure. These findings reinforce that cryofixation should be the indicated method for SEM sample preparation to study fungal biofilms as it allows the visualisation of the EMC and the exploration of the biofilm structure to its fullest, as its structural/functional role in interaction with host cells, other pathogens and for drug resistance assays.  相似文献   

16.
Solidification microstructure is a defining link between production techniques and the mechanical properties of metals and in particular steel. Due to the difficulty of conducting solidification studies at high temperature, knowledge of the development of solidification microstructure in steel is scarce. In this study, a laser‐scanning confocal microscopy (LSCM) has been used to observe in situ and in real‐time the planar to cellular to dendritic transition of the progressing solid/liquid interface in low carbon steel. Because the in situ observations in the laser‐scanning confocal microscopy are restricted to the surface, the effect of sample thickness on surface observations was determined. Moreover, the effect of cooling rate and alloy composition on the planar to cellular interface transition was investigated. In the low‐alloyed, low‐carbon steel studied, the cooling rate does not seem to have an effect on the spacing of the cellular microstructure. However, in the presence of copper and manganese, the cell spacing decreased at higher cooling rates. Higher concentrations of copper in steel resulted on an increased cell spacing at the same cooling rates.  相似文献   

17.
CG 10-248 (3,4-dihydro-2,2 dimethyl-9-chloro-2H-naphtho[1,2b]pyran-5,6-dione), a ß-lapachone analogue, modified the ultrastructure of rat liver mitochondria in vitro, in the absence of added oxidizable substrates. The condensed mitochondrial state was replaced by the orthodox or swollen state to a significant degree. The number of modified mitochondria depended on incubation time and quinone concentration, in the 25-100 µM range. Under the same experimental conditions, mitochondrial respiration was uncoupled as indicated by the increase in the rate of succinate oxidation by controlled mitochondria in metabolic state “4” (not in state “3”), and by the activation of latent F0 F1 -ATP synthase. Taking into account structural similarities, the results reported here may be valid for other o-naphthoquinones, such as ß-lapachone.  相似文献   

18.
Red myofibers in mouse soleus muscle have two spatially distinct populations of mitochondria: one where these organelles are disposed in large clusters just inside the sarcolemma and the other situated between the myofibrils. In most cases, the interfibrillar mitochondria (IFM), which are much smaller than the subsarcolemmal ones (SSM), are arranged as pairs, with each member on opposite sides of the Z‐line. In some myofibers, the IFM have fused end‐to‐end to form greatly elongated organelles, which we call “string mitochondria.” Although narrow, these can be many sarcomeres in length. The SSM do not form string mitochondria. Most of the string mitochondria exhibit many instances of “pinching,” a process involved in mitochondrial division. Elements of sarcoplasmic reticulum are intimately involved with each mitochondrial membrane invagination. It appears as if the fusion:fission balance of IFM in the soleus muscle is slightly out of kilter, with end‐to‐end fusion predominating over fission. Microsc. Res. Tech. 76:237–241, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

19.
The nuclear envelope of Xenopus laevis stage VI oocytes was studied in a high‐resolution field emission cryo‐scanning electron microscope to compare the level of structural preservation obtainable by different procedures of specimen preparation. All approaches generally allowed frequent detection of long filaments of about 10 nm in diameter that were attached to the nuclear envelope's inner membrane facing the nuclear interior. Structural details of these 10‐nm filaments, however, could not be unveiled by standard procedures of specimen preparation and analysis, including critical point drying and imaging at room temperature. In contrast, after freeze‐drying and imaging at ?100°C, the 10‐nm filament type was found to be composed of distinct globular subunits of approximately 5 nm in diameter that were arranged in a helical manner with right‐handed periodicity. Stereoscopic images showed that some of these filaments were lying directly on the membrane whereas others appeared to hover at a certain distance above the nuclear envelope. The appearance of these filaments was highly similar to that of in vitro polymerized F‐actin analysed in parallel, and closely resembled the structural characteristics of F‐actin filaments described earlier. By virtue of their structural features we therefore conclude that these filaments at the nuclear periphery represent F‐actin. The high level of structural resolution obtainable by field emission cryo‐SEM illustrates the potential of this method for studying details of biological structures in a subcellular context.  相似文献   

20.
The introduction of scanning/transmission electron microscopes (S/TEM) with sub‐Angstrom resolution as well as fast and sensitive detection solutions support direct observation of dynamic phenomena in‐situ at the atomic scale. Thereby, in‐situ specimen holders play a crucial role: accurate control of the applied in‐situ stimulus on the nanostructure combined with the overall system stability to assure atomic resolution are paramount for a successful in‐situ S/TEM experiment. For those reasons, MEMS‐based TEM sample holders are becoming one of the preferred choices, also enabling a high precision in measurements of the in‐situ parameter for more reproducible data. A newly developed MEMS‐based microheater is presented in combination with the new NanoEx?‐i/v TEM sample holder. The concept is built on a four‐point probe temperature measurement approach allowing active, accurate local temperature control as well as calorimetry. In this paper, it is shown that it provides high temperature stability up to 1,300°C with a peak temperature of 1,500°C (also working accurately in gaseous environments), high temperature measurement accuracy (<4%) and uniform temperature distribution over the heated specimen area (<1%), enabling not only in‐situ S/TEM imaging experiments, but also elemental mapping at elevated temperatures using energy‐dispersive X‐ray spectroscopy (EDS). Moreover, it has the unique capability to enable simultaneous heating and biasing experiments. Microsc. Res. Tech. 79:239–250, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号